| DTFT |
![]() |
(14.1) |
![]() |
(14.2) |
![]() |
![]() |
(14.4) |
![]() |
(14.5) |
| (14.6) | ||
| (14.7) |
ちょっといくつか簡単なものの計算をしてみるか.
| (14.8) | ||
![]() |
(14.9) | |
| (14.10) |
| (14.11) |
![]() |
(14.12) | |
![]() |
(14.13) | |
| (14.14) |
3つめ,最後の例だ.
| (14.15) |
![]() |
(14.16) | |
| (14.17) | ||
| (14.18) |
じゃあ
だけが変化するとどうだ?
このうち特に
のとき,つまり
領域の虚軸に対応するのは,
領域の単位円になる.
だからな.
こんな風に,
と
の対応関係を把握しておくことは重要だ.
z 変換を導入したときの元々の関係は
| (14.19) |
| (14.20) |
![]() |
(14.21) |
![]() |
(14.23) | |
![]() |
(14.24) | |
![]() |
(14.25) |
というわけで得られた式 (14.25) が逆 z 変換の公式だ.
じゃなくて
にしか戻らないというのもラプラス逆変換と同じだな.
![]() |
![]() |
(12.15) |
| (14.26) |
![]() |
![]() |
(14.27) |
![]() |
![]() |
(14.28) |
![]() |
![]() |
(14.29) |
| (14.30) | ||
| (14.31) |
![]() |
![]() |
(14.32) |
![]() |
(14.33) |
| (14.34) | ||
| (14.35) |
![]() |
(14.38) |
じゃあ,これらを使って,具体例を逆 z 変換してみるか.
![]() |
(14.40) |
![]() |
(14.41) |
| (14.42) |
| (14.43) | ||
| (14.44) |
そう限定すると,必ず
![]() |
(14.45) |
| (14.46) |
| (14.47) |
各サブシステムの時間領域の挙動は
の値で決まる.例えば
だったら発散するし,
なら減衰していく.複素数なら振動するって具合だ.
![]() |
(14.48) |
![]() |
(14.49) |
というわけで今回のまとめだ.
swk(at)ic.is.tohoku.ac.jp