Intelligent Control Systems

Visual Tracking (1)
 — Direct Pixel-Intensity-based Methods -

Shingo Kagami
Graduate School of Information Sciences,
Tohoku University swk(at)ic.is.tohoku.ac.jp

http://www.ic.is.tohoku.ac.jp/ja/swk/

Sample codes for this week

- Open https://github.com/shingo-kagami/ic.git
- Click the green button "Code" and click "Download Zip"
- Copy the files whose names start from ic03*** to C:¥ic2022¥sample

If you are a Git user, you may simply run:

```
cd C:¥ic2022¥sample
git pull
```


Agenda

- Template Matching by Brute-force Search
- Template Matching by Gradient-based Search
- Feature Point Detection
- Gradient-based Search for General Warps

Visual Tracking

input image

template image $T_{x, y}$

Matching Problem:

- To find the area with the best similarity to the template How?
- by evaluating a similarity measure or a dissimilarity measure for every possible position

Matching is often called "tracking" when it is sequentially done with time

Detection vs Tracking

Matching problem is called detection when:
Target object is found out of the entire image without relying on knowledge in previous frames

- If we detect the target object every frame, it can be regarded as a kind of tracking (Tracking by Detection)
- However, detection is usually computationally demanding

Hence, when real-time tracking is needed, we usually try to utilize our knowledge in previous frames; once failed, we fall back to detection

Feature-based Methods vs Direct Methods

direct comparison of pixel values

comparison of feature values computed from images (e.g. histograms, edge positions, ...)

Direct Methods Illustrated

 Minimum point of
dissimilarity measure
(In this example, sum of
squared difference of pixel
intensities)

Examples of Evaluation Functions

$$
\begin{aligned}
& d_{\mathrm{SSD}}(x, y)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1}\left(T_{i, j}-I_{x+i, y+j}\right)^{2} \quad \begin{array}{ll}
: \text { sum of squared differences (SSD) } \\
\rightarrow \text { min }
\end{array} \\
& d_{\mathrm{SAD}}(x, y)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1}\left|T_{i, j}-I_{x+i, y+j}\right| \\
& \text { : sum of absolute differences (SAD) } \\
& \rightarrow \text { min } \\
& C(x, y)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} T_{i, j} I_{x+i, y+j} \\
& \text { : cross correlation } \\
& \rightarrow \text { max } \\
& C_{\mathrm{n}}(x, y)=\frac{\sum_{i=0}^{m-1} \sum_{j=0}^{n-1}\left(T_{i, j}-\bar{T}\right)\left(I_{x+i, y+j}-\overline{\bar{I}_{x, y}}\right)}{\sqrt{\sum_{i=0}^{m-1} \sum_{j=0}^{n-1}\left(T_{i, j}-\bar{T}\right)^{2} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1}\left(I_{x+i, y+j}-\bar{I}_{x, y}\right)^{2}}}
\end{aligned}
$$

: zero-mean normalized cross correlation (ZNCC)
\rightarrow max

Template Matching for Detection and Tracking

input image
For Detection: search area is set to the entire image

For Tracking: search area is set at around the position in the previous frame (or a position predicted from previous frames)

search area
template image \square

Implementation of SSD Matching

```
ic03_template_match_2d.py
    def SSD(target, candidate):
    height, width = target.shape
    ssd_val = 0
    for j in range(height):
        for i in range(width):
            d = candidate[j, i] - target[j, i]
            ssd_val += d * d
    return ssd_val
```

```
min_ssd = sys.maxsize ## initialized with a large, large number
```

min_ssd = sys.maxsize \#\# initialized with a large, large number
for j in range(sybegin, syend):
for j in range(sybegin, syend):
for i in range(sxbegin, sxend):
for i in range(sxbegin, sxend):
candidate = image[j:(j + theight), i:(i + twidth)]
candidate = image[j:(j + theight), i:(i + twidth)]
ssd = SSD(target, candidate)
ssd = SSD(target, candidate)
if ssd < min_ssd:
if ssd < min_ssd:
min_ssd = ssd
min_ssd = ssd
min_location = (i, j)

```
        min_location = (i, j)
```


Gradient-based Optimization

Instead of brute force search for the minimum, let us consider application of Gauss-Newton optimization method to minimize:

$$
\sum_{i, j}\left\{I\left(p_{x}+i, p_{y}+j\right)-T(i, j)\right\}^{2}
$$

Starting with an initial guess $\boldsymbol{p}=\left(p_{x}, p_{y}\right)$, we seek for $\Delta \boldsymbol{p}=\left(\Delta p_{x}, \Delta p_{y}\right)$ that makes $I_{p+\Delta \mathbf{p}}(x, y)$ closer to $T(x, y)$

Lucas-Kanade Method: forward algorithm (1/2)

$1^{\text {st }}$ order Taylor expansion is applied:

$$
\begin{aligned}
& E\left(\Delta p_{x}, \Delta p_{y}\right)=\sum_{i, j}\left\{I_{\boldsymbol{p}}\left(\Delta p_{x}+i, \Delta p_{y}+j\right)-T(i, j)\right\}^{2} \\
& \simeq \sum_{i, j}\left\{I_{\boldsymbol{p}}(i, j)+\frac{\partial I_{\boldsymbol{p}}}{\partial x}(i, j) \Delta p_{x}+\frac{\partial I_{\boldsymbol{p}}}{\partial y}(i, j) \Delta p_{y}-T(i, j)\right\}^{2} \quad e_{\boldsymbol{p}}=T-I_{\boldsymbol{p}} \\
&=\sum_{i, j}\left\{\frac{\partial I_{\boldsymbol{p}}}{\partial x}(i, j) \Delta p_{x}+\frac{\partial I_{\boldsymbol{p}}}{\partial y}(i, j) \Delta p_{y}-e_{\boldsymbol{p}}(i, j)\right\}^{2} \rightarrow \min _{\Delta p_{x}, \Delta p_{y}} \\
& \text { and partial derivatives are equated to 0: } \\
& \frac{\partial E}{\partial \Delta p_{x}}=2 \sum_{i, j}\left\{\frac{\partial I_{\boldsymbol{p}}}{\partial x}(i, j) \Delta p_{x}+\frac{\partial I_{\boldsymbol{p}}}{\partial y}(i, j) \Delta p_{y}-e_{\boldsymbol{p}}(i, j)\right\} \frac{\partial I_{\boldsymbol{p}}}{\partial x}(i, j)=0 \\
& \frac{\partial E}{\partial \Delta p_{y}}=2 \sum_{i, j}\left\{\frac{\partial I_{\boldsymbol{p}}}{\partial x}(i, j) \Delta p_{x}+\frac{\partial I_{\boldsymbol{p}}}{\partial y}(i, j) \Delta p_{y}-e_{\boldsymbol{p}}(i, j)\right\} \frac{\partial I_{\boldsymbol{p}}}{\partial y}(i, j)=0
\end{aligned}
$$

Rearrainging them into linear equations with respect to ($\Delta p_{x}, \Delta p_{y}$)

$$
\left(\begin{array}{cc}
\sum\left(\frac{\partial I_{p}}{\partial x}\right)^{2} & \sum \frac{\partial I_{p}}{\partial x} \frac{\partial I_{p}}{\partial y} \\
\sum \frac{\partial I_{p}}{\partial x} \frac{\partial I_{p}}{\partial y} & \sum\left(\frac{\partial I_{p}}{\partial y}\right)^{2}
\end{array}\right)\binom{\Delta p_{x}}{\Delta p_{y}}=\binom{\sum \frac{\partial I_{p}}{\partial x} e_{p}}{\sum \frac{\partial I_{p}}{\partial y} e_{p}}
$$

Lucas-Kanade Method: forward algorithm (2/2)

- By solving the above equation, $\left(\Delta p_{x}, \Delta p_{y}\right)$ is only approximately best because of the $1^{\text {st }}$ order Taylor approximation. We usually need to iteratively run the above process by updating

$$
\begin{aligned}
& p_{x} \leftarrow p_{x}+\Delta p_{x} \\
& p_{y} \leftarrow p_{y}+\Delta p_{y}
\end{aligned}
$$

and obtaining $I_{\boldsymbol{p}}(x, y)=I\left(p_{x}+x, p_{y}+y\right)$ with new $\boldsymbol{p}=\left(p_{x}, p_{y}\right)$

- Because $I_{p}(x, y)$ changes, the derivatives and their products must be recomputed for each iteration
[Lucas and Kanade 1981]

Understanding in Vector Formulation

The problem to be solved is:

$$
\|\boldsymbol{f}(\boldsymbol{p})-\boldsymbol{y}\|^{2} \rightarrow \min _{\boldsymbol{p}}
$$

Setting an initial guess of \boldsymbol{p}, we seek for additive update $\Delta \boldsymbol{p}$

$$
\boldsymbol{f}_{\boldsymbol{p}}=\left(\begin{array}{c}
I_{\boldsymbol{p}}(0,0) \\
I_{\boldsymbol{p}}(1,0) \\
I_{\boldsymbol{p}}(2,0) \\
\vdots \\
I_{\boldsymbol{p}}(0, n-1)
\end{array}\right)
$$

$$
\begin{aligned}
& E(\Delta \boldsymbol{p})=\left\|\boldsymbol{f}(\boldsymbol{p})+\frac{\partial \boldsymbol{f}(\boldsymbol{p})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-\boldsymbol{y}\right\|^{2}=\left\|J \Delta \boldsymbol{p}-\boldsymbol{e}_{\boldsymbol{p}}\right\|^{2} \rightarrow \min _{\Delta \boldsymbol{p}} \\
& \frac{\partial E(\Delta \boldsymbol{p})}{\partial \Delta \boldsymbol{p}}=2 J^{T}\left(J \Delta \boldsymbol{p}-\boldsymbol{e}_{\boldsymbol{p}}\right)=\mathbf{0}^{T} \\
& J^{T} J \Delta \boldsymbol{p}=J^{T} \boldsymbol{e}_{\boldsymbol{p}}
\end{aligned}
$$

After solving the above equation for $\Delta \boldsymbol{p}, \boldsymbol{p}$ is updated iteratively

$$
\boldsymbol{y}=\left(\begin{array}{c}
T(0,0) \\
T(1,0) \\
T(2,0) \\
\vdots \\
T(0, n-1)
\end{array}\right)
$$ $\boldsymbol{p} \leftarrow \boldsymbol{p}+\Delta \boldsymbol{p}$

$$
\begin{aligned}
J= & \left(\begin{array}{cc}
\frac{\partial I_{\boldsymbol{p}}(0,0)}{\partial x} & \frac{\partial I_{\boldsymbol{p}}(0,0)}{\partial y} \\
\frac{\partial I_{p}(1,0)}{\partial x} & \frac{\partial I_{p}(1,0)}{\partial y} \\
\vdots & \vdots
\end{array}\right)
\end{aligned} e_{\boldsymbol{p}}=\left(\begin{array}{c}
T(0,0)-I_{\boldsymbol{p}}(0,0) \\
T(1,0)-I_{\boldsymbol{p}}(1,0) \\
\vdots
\end{array}\right)
$$

Inverse Algorithm (1/2)

The recomputation of derivatives and their products per iteration can be avoided by exchanging the role of T and I_{p}

$$
E\left(\Delta p_{x}, \Delta p_{y}\right)=\sum_{i, j}\left\{T\left(\Delta p_{x}+i, \Delta p_{y}+j\right)-I_{p}(i, j)\right\}^{2}
$$

Inverse Algorithm (2/2)

$$
\begin{aligned}
& E\left(\Delta p_{x}, \Delta p_{y}\right) \simeq \sum_{i, j}\left\{T(i, j)+\frac{\partial T}{\partial x}(i, j) \Delta p_{x}+\frac{\partial T}{\partial y}(i, j) \Delta p_{y}-I_{\boldsymbol{p}}(i, j)\right\}^{2} \\
&=\sum_{i, j}\left\{\frac{\partial T}{\partial x}(i, j) \Delta p_{x}+\frac{\partial T}{\partial y}(i, j) \Delta p_{y}-e_{\boldsymbol{p}}(i, j)\right\}^{2} \rightarrow \min _{\Delta p_{x}, \Delta p_{y}} \\
&\left(\begin{array}{cc}
\sum\left(\frac{\partial T}{\partial x}\right)^{2} & \sum \frac{\partial T}{\partial x} \frac{\partial T}{\partial y} \\
\sum \frac{\partial T}{\partial x} \frac{\partial T}{\partial y} & \sum\left(\frac{\partial T}{\partial y}\right)^{2}
\end{array}\right)\binom{\Delta p_{x}}{\Delta p_{y}}=\binom{\sum \frac{\partial T}{\partial x} e_{\boldsymbol{p}}}{\sum \frac{\partial T}{\partial y} e_{\boldsymbol{p}}}
\end{aligned}
$$

After solving ($\Delta p_{x}, \Delta p_{y}$), we resample $I_{p}(x, y)$ with new \boldsymbol{p} updated by

$$
\begin{aligned}
& p_{x} \leftarrow p_{x}-\Delta p_{x} \\
& p_{y} \leftarrow p_{y}-\Delta p_{y}
\end{aligned}
$$

Move I_{p} in the opposite direction

Implementation of the Inverse LK (1/2)

```
ic03_lucas_kanade_2d.py
for j in range(1, theight - 1):
    for i in range(1, twidth - 1):
        Tx[j, i] = (T[j, i + 1] - T[j, i - 1]) / 2
        Ty[j, i] = (T[j + 1, i] - T[j - 1, i]) / 2
        TxTx[j, i] = Tx[j, i] * Tx[j, i]
        TyTy[j, i] = Ty[j, i] * Ty[j, i]
        TxTy[j, i] = Tx[j, i] * Ty[j, i]
        H[0, 0] += TxTx[j, i]
        H[1, 1] += TyTy[j, i]
        H[0, 1] += TxTy[j, i]
H[1, 0] = H[0, 1]
for j in range(1, theight - 1):
    for i in range(1, twidth - 1):
            err[j, i] = Ip[j, i] - T[j, i]
            Tx_err[j, i] = Tx[j, i] * err[j, i]
            Ty_err[j, i] = Ty[j, i] * err[j, i]
            Jt_err[0] += Tx_err[j, i]
            Jt_err[1] += Ty_err[j, i]
```


Implementation of the Inverse LK (2/2)

```
def match_template_lk(image, current_center, T, Tx, Ty, JtJ, max_iter=50):
```

 theight, twidth = T.shape
 for iter in range(max_iter):
 Ip = cv2.getRectSubPix(image, (twidth, theight), current_center)
 Ip = np.float32(Ip)
 Jt_err = compute_Jt_err(Ip, T, Tx, Ty)
 dp = np.linalg.solve(JtJ, Jt_err)
 current_center = (current_center[0] - dp[0], current_center[1] - dp[1])
 if np.linalg.norm(dp) < 0.2:
 break
 return current_center

Feature Point Detection

Let's consider a case where we need to automatically extract some (often many) points to be tracked to analyze e.g. the scene structure or motion

A: Block with constant intensity is not suitable
B: Block including only edges with the same direction is also not suitable
C: Suitable for tracking
How to find blocks like C?

Analysis of Hessian Matrix

$$
\left(\begin{array}{ll}
\sum\left(\frac{\partial T}{\partial x}\right)^{2} & \sum \frac{\partial T}{\partial x} \frac{\partial T}{y y} \\
\sum \frac{\partial T}{\partial x} \frac{\partial T}{\partial y} & \left.\sum \frac{(\hat{\partial}}{\partial y}\right)^{2}
\end{array}\right)\binom{\Delta p_{x}}{\Delta p_{y}}=\binom{\sum \frac{\partial T}{\partial x} e_{p}}{\sum \frac{\partial T}{\partial y} e_{p}}
$$

The above equation should be stably solved for a block suitable for tracking

By Diagonalizing $J^{T} J=Q^{-1}\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) Q$, we have

$$
\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) Q \Delta \boldsymbol{p}=Q J^{T} \boldsymbol{e}_{p}
$$

(Since $J^{T} J$ is positive semi-definite symmetric matrix, $\lambda_{1}, \lambda_{2} \geq 0$ and Q is orthogonal matrix)

- Both λ_{1} and λ_{2} should be sufficiently larger than zero
- Too small λ_{i} implies that determining i-th
 element of $Q \Delta \boldsymbol{p}$ is difficult

Examples of Feature Point Detector

Good Features to Track [Tomasi and Kanade 1991]

```
min}(\mp@subsup{\lambda}{1}{},\mp@subsup{\lambda}{2}{}
```

Harris operator [Harris and Stephens 1988]

$$
\begin{aligned}
& \operatorname{det} H-k(\operatorname{tr} H)^{2} \\
= & \lambda_{1} \lambda_{2}-k\left(\lambda_{1}+\lambda_{2}\right)^{2}
\end{aligned}
$$

The points with large values of the above indicators, which are "good" for tracking and/or matching, are called feature point, interest point, corner point, keypoint and so on.

Implementation of Feature Point Detectors (1/2)

```
ic03_feature_points.py
def hessian_map(T, block_size=5):
    Tx = np.gradient(T, axis=1) Gradients are computed for all over the image
    Ty = np.gradient(T, axis=0)
    TxTx = Tx * Tx
    TyTy = Ty * Ty
    TxTy = Tx * Ty
    theight = T.shape[0]
    twidth = T.shape[1]
    H = np.zeros((theight, twidth, 2, 2), dtype=T.dtype)
    H[:, :, 0, 0] = cv2.blur(TxTx, (block_size, block_size))
    H[:, :, 1, 1] = cv2.blur(TyTy, (block_size, block_size))
    H[:, :, 0, 1] = cv2.blur(TxTy, (block_size, block_size))
    H[:, :, 1, 0] = H[:, :, 0, 1]
    return H
```


Implementation of Feature Point Detectors (2/2)

```
def min_eigen_value_map(H):
    a = H[:, :, 0, 0] # H = [a b]
    b = H[:, :, 0, 1] # [c d]
    c = H[:, :, 1, 0]
    d = H[:, :, 1, 1]
    ## the smaller solution of s^2 - (a + d) s + ad - bc = 0
    min_eig = ((a + d) - np.sqrt((a - d)**2 + 4 * b * c)) / 2
    return min_eig
def harris_map(H, coeff_k):
    a = H[:, :, 0, 0] # H = [a b]
    b = H[:, :, 0, 1] # [c d]
    c = H[:, :, 1, 0]
    d = H[:, :, 1, 1]
    return (a * d - b * c) - coeff_k * (a + d)**2
```


Other Feature Point Detectors

SIFT detector [Lowe 2004]

- Build a Gaussian scale space and apply (an approximate) Laplacian operator in each scale
- Detect extrema of the results (i.e. strongest responses among their neighbor in space as well as in scale)
- Eliminate edge responses
- (Often followed by encoding of edge orientation histogram in the neighborhood into a fixed-size vector, called a feature point descriptor, which can be compared with each other by Euclidean distance)

FAST detector [Rosten et al. 2010]

- Heuristics based on pixel values along a surrounding circle
- Optimized for speed and quality by machine learning approach

Generalization to Different Warps

We want to generalize the inverse algorithm of Lucas-Kanade method for warps beyond 2D translation

Naïve (and wrong) Generalization

Let's think of the rigid transform case where $\boldsymbol{p}=\left(p_{x}, p_{y}, p_{\theta}\right)$

$$
E(\Delta \boldsymbol{p}) \simeq \sum_{i, j}\left\{\frac{\partial T}{\partial p_{x}}(i, j) \Delta p_{x}+\frac{\partial T}{\partial p_{y}}(i, j) \Delta p_{y}+\frac{\partial T}{\partial p_{\theta}}(i, j) \Delta p_{\theta}-e_{\boldsymbol{p}}(i, j)\right\}^{2} \rightarrow \min _{\Delta \boldsymbol{p}}
$$

Then, should we update \boldsymbol{p} as $\boldsymbol{p} \leftarrow \boldsymbol{p}-\Delta \boldsymbol{p}$?
Obviously no!

What was wrong?

What we must do is to invert the warp, which happened to be equal to negating the signs of parameters in the translation case:

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & p_{x} \\
0 & 1 & p_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \underset{\substack{\text { inverse }}}{\sim}\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -p_{x} \\
0 & 1 & -p_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)
$$

However, it generally does not

$$
\begin{aligned}
& \left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\cos p_{\theta} & -\sin p_{\theta} & p_{x} \\
\sin p_{\theta} & \cos p_{\theta} & p_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \\
& \left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \neq\left(\begin{array}{ccc}
\cos \left(-p_{\theta}\right) & -\sin \left(-p_{\theta}\right) & -p_{x} \\
\sin \left(-p_{\theta}\right) & \cos \left(-p_{\theta}\right) & -p_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)
\end{aligned}
$$

So, what to do?

First, we need to introduce the warping function explicitly:

$$
\begin{aligned}
& \boldsymbol{x}^{\prime}=\boldsymbol{w}_{\boldsymbol{p}}(\boldsymbol{x}) \quad \boldsymbol{x}=(x, y)^{T}, \boldsymbol{x}^{\prime}=\left(x^{\prime}, y^{\prime}\right)^{T} \\
& E(\Delta \boldsymbol{p})=\sum_{\boldsymbol{x}}\left\{T\left(\boldsymbol{w}_{\Delta \boldsymbol{p}}(\boldsymbol{x})\right)-I\left(\boldsymbol{w}_{\boldsymbol{p}}(\boldsymbol{x})\right)\right\}^{2} \rightarrow \min _{\Delta \boldsymbol{p}} \\
& \text { cf. the translation case: } E(\Delta \boldsymbol{p})=\sum_{i, j}\left\{T\left(\Delta p_{x}+i, \Delta p_{y}+j\right)-I_{\boldsymbol{p}}(i, j)\right\}^{2} \\
& E(\Delta \boldsymbol{p}) \simeq \sum_{i, j}\left\{\left(\frac{\partial T}{\partial p_{1}}(i, j) \Delta p_{1}+\frac{\partial T}{\partial p_{2}}(i, j) \Delta p_{2}+\cdots\right)-e_{\boldsymbol{p}}(i, j)\right\}^{2} \\
& \frac{\partial T}{\partial p_{k}}(x, y)=\left.\frac{\partial}{\partial p_{k}} T\left(\boldsymbol{w}_{\boldsymbol{p}}(\boldsymbol{x})\right)\right|_{\boldsymbol{p}=\mathbf{0}} \\
& =\left.\frac{\partial T}{\partial \boldsymbol{x}} \frac{\partial \boldsymbol{w}_{\boldsymbol{p}}(\boldsymbol{x})}{\partial p_{k}}\right|_{\boldsymbol{p}=\mathbf{0}} \\
& \text { How much the pixel value changes } \\
& \text { when the pixel coordinates move } \\
& \text { How much the pixel coordinates } \\
& \text { move when } p_{k} \text { moves around } 0
\end{aligned}
$$

Warp Functions and Their Derivatives

$$
\begin{aligned}
&\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \quad \text { rigid transform: } \boldsymbol{p}=\left(t_{x}, t_{y}, \theta\right) \\
&\binom{x^{\prime}}{y^{\prime}}=\boldsymbol{w}_{\boldsymbol{p}}(\boldsymbol{x})=\binom{x \cos \theta-y \sin \theta+t_{x}}{x \sin \theta+y \cos \theta+t_{y}} \\
&\left.\frac{\partial}{\partial \boldsymbol{p}} \boldsymbol{w}_{\boldsymbol{p}}(\boldsymbol{x})\right|_{\boldsymbol{p}=\mathbf{0}}=\left(\begin{array}{ccc}
1 & 0 & -y \\
0 & 1 & x
\end{array}\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right) \propto\left(\begin{array}{ccc}
1+p_{1} & p_{2} & p_{3} \\
p_{4} & 1+p_{5} & p_{6} \\
p_{7} & p_{8} & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) & \text { homography transform } \\
\binom{x^{\prime}}{y^{\prime}}=\boldsymbol{w}_{\boldsymbol{p}}(\boldsymbol{x})= & \left(\begin{array}{c}
\frac{\left(1+p_{1}\right) x+p_{2} y+p_{3}}{p_{7} x+p_{8} y+1} \\
p_{4} x+\left(1+p_{5}\right) y+p_{6} \\
p_{7} x+p_{8} y+1
\end{array}\right) \\
\left.\frac{\partial}{\partial \boldsymbol{p}} \boldsymbol{w}_{\boldsymbol{p}}(\boldsymbol{x})\right|_{\boldsymbol{p}=\mathbf{0}} & =\left(\begin{array}{cccccc}
x & y & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x & y & 1
\end{array}-x^{2}\right.
\end{array}-x y \begin{array}{l}
-y^{2}
\end{array}\right) .
$$

Inverse Compositional Algorithm of LK Method

Precompute J and $J^{T} J$ once template is given
Iteratively solve $J^{T} J \Delta \boldsymbol{p}=J^{T} \boldsymbol{e}_{\boldsymbol{p}}$ and update the warp by composing the obtained incremental warp $w_{\Delta p}$

$$
\boldsymbol{w}_{\boldsymbol{p}} \leftarrow \boldsymbol{w}_{\boldsymbol{p}} \circ \boldsymbol{w}_{\Delta \boldsymbol{p}}^{-1}
$$

$$
J=\left(\underset{\text { \# parameters }}{\left(\begin{array}{ccc}
\frac{\partial T(0,0)}{\partial p_{1}} & \frac{\partial T(0,0)}{\partial p_{2}} & \cdots \\
\frac{\partial T(1,0)}{\partial p_{1}} & \frac{\partial T(1,0)}{\partial p_{2}} & \cdots \\
\vdots & \vdots &
\end{array}\right) \downarrow \text { \# pixels }}\right.
$$

Implementation for Homography Warp (1/2)

```
ic03_lucas_kanade_homography.py
def compute_derivatives(T):
    theight = T.shape[0]
    twidth = T.shape[1]
    npix = twidth * theight
    Tx = np.gradient(T, axis=1).reshape(npix, 1)
    Ty = np.gradient(T, axis=0).reshape(npix, 1)
    dwdp_x = np.empty((npix, 8), dtype=T.dtype)
    dwdp_y = np.empty((npix, 8), dtype=T.dtype)
    row = 0
    for y in range(theight):
        for x in range(twidth):
            dwdp_x[row] = np.array([ x, y, 1, 0, 0, 0, -x*x, -x*y ])
            dwdp_y[row] = np.array([ 0, 0, 0, x, y, 1, -x*y, -y*y ])
            row += 1
    J = Tx * dwdp_x + Ty * dwdp_y row-wise multiply and element-wise add
    JtJ = np.dot(J.T, J)
    return J, JtJ
```


Implementation for Homography Warp (2/2)

```
                                    current guess is passed as a homography matrix
def track_homography_lk(image, homography_p, T, J, JtJ, max_iter=50):
    theight, twidth = T.shape
    npix = twidth * theight
    for iter in range(max_iter):
        Ip = cv2.warpPerspective(image, inv(homography_p), (twidth, theight))
        Ip = np.float32(Ip)
        err = (Ip - T).reshape(npix)
        dp = np.linalg.solve(JtJ, np.dot(J.T, err))
        homography_dp = np.array([[1 + dp[0], dp[1], dp[2]],
            [dp[3], 1 + dp[4], dp[5]],
            [dp[6], dp[7], 1.0]])
        homography_p = np.dot(homography_p, inv(homography_dp))
    return homography_p
```

composition of warps is done by matrix multiplication

```
returns an updated homography matrix
```


Other Choices of Optimization Methods

Levenberg-Marquardt method

$$
\left(J^{T} J+\mu I\right) \Delta \boldsymbol{p}=J^{T} \boldsymbol{e}_{\boldsymbol{p}}
$$

I : identity matrix
μ : scalar coefficient (updated between iterations) (small μ : more like Gauss-Newton, large μ : more like steepest descent)

Efficient Second-order Minimization method [Banhimane and Malis 2007]

$$
\left(J^{T} J\right) \Delta \boldsymbol{p}=J^{T} \boldsymbol{e}_{\boldsymbol{p}}, \quad J=\left(J_{1}+J_{2}\right) / 2
$$

J_{1} : derivative of template image
J_{2} : derivative of current warped image (Possible when parametrized with special care)

Exercises (Not Assignments)

Copy and modify ic03_lucas_kanade_homography.py to apply a simpler version of Levenberg-Marquardt method in which μ is fixed, i.e., replace JtJ for example with JtJ + 0.001 * np.eye(8) in:
dp = np.linalg.solve(JtJ, np.dot(J.T, err))

You may want to choose different μ other than 0.001 and see the difference. You may also need to increase max_iter.

Copy and modify ic03_lucas_kanade_homography.py to visualize J (Jacobian matrix).
Hint:

- J[:, k] (k-th column of J) gives derivative with respect to the k-th parameter, which should be reshaped to the shape of the template image
- The values should be normalized to fit $[0,1]$ when passed to cv2.imshow

References

- B. K. P. Horn and B. G. Schunck: Determining Optical Flow, Artificial Intelligence, vol.17, pp.185-203, 1981.
- C. Harris and M. Stephens: A Combined Corner and Edge Detector, Proc. 14th Alvey Vision Conference, pp.147-151, 1988.
- B. D. Lucas and T. Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision, Proc. 7th International Conference on Artificial Intelligence, pp.674-679, 1981.
- S. Baker and I. Matthews: Lucas-Kanade 20 Years On: A Unifying Framework, International Journal of Computer Vision, vol. 56, no. 3, 2004.
- S. Benhimane and E. Malis: Homography-based 2D Visual Tracking and Servoing, International Journal of Robotics Research, vol. 26, no. 7, pp.661-676, 2007.
- D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
- E. Rosten, R. Porter and T. Drummond: Faster and Better: A Machine Learning Approach to Corner Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 1, pp. 105-119, 2010.
- C. Tomasi and T. Kanade: Detection and Tracking of Point Features, Shape and Motion from Image Streams: a Factorization Method -Part 3, Technical Report CMU-CS-91-132, Carnegie Mellon University, 1991.

