
Intelligent Control Systems

Image Processing (2)
— Filtering, Geometric Transforms and Colors —

Shingo Kagami
Graduate School of Information Sciences,

Tohoku University
swk(at)ic.is.tohoku.ac.jp

http://www.ic.is.tohoku.ac.jp/ja/swk/

Taxonomy

3Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

input output

image
image image-to-image conversion
(2-D data)

1-D data projection, histogram

scalar values position, object label

example

Image to Image

4Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

image image

{ Fx,y } { Gx,y }

point operation
Gi,j depends only on Fi,j

local operation / neighboring operation
Gi,j depends on pixels within some neighborhood of Fi,j

global operation
Gi,j depends on almost all the pixels in { Fi,j }

(thresholding, pixel value conversion, …)

Image to Image

5Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

image image

{ Fx,y } { Gx,y }

point operation
Gi,j depends only on Fi,j

local operation / neighboring operation
Gi,j depends on pixels within some neighborhood of Fi,j

global operation
Gi,j depends on almost all the pixels in { Fi,j }

6Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Local operation example: Spatial Filter

{ Fx,y } { Gx,y }

Gx,y
{ Fi,j }, (i, j) ∈ Neighbor(x,y)

Gx,y depends on some neighborhood (e.g. 3×3, 5×5 pixels,
etc.) of the point of interest (x,y)

Typical examples: smoothing, edge detection

7Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Important Example: Smoothing
• Output at (x, y): some representative value of the set of neighbor

pixels around (x, y), e.g. mean, weighted mean, median
• Used for: e.g. noise reduction, scale-space processing

Gx,y
{ Fi,j }, (i, j) ∈ Neighbor(x,y)

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

(mean) (weighted mean)

8Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Linear Spatial Filtering
• Smoothing with (weighted) mean is an example of linear

spatial filtering (while smoothing with median is nonlinear)
• Computed by convolving a weight matrix (filter coefficients,

filter kernel, or mask) to input image

{ Fx,y } { Gx,y }

Gx,y
{ Fi,j }, (i, j) ∈ Neighbor(x,y)

weight matrix

pixel-wise multiplication
and summation

9Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Examples of 3x3 smoothing weight matrices

1 1 1

1 2 1

1 1 1

0 1 0

1 4 1

0 1 0

1 1 1

1 1 1

1 1 1
1/9 1/10 1/8

1/10 1/10 1/10

1/10 1/5 1/10

1/10 1/10 1/10

0 1/8 0

1/8 1/2 1/8

0 1/8 0

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

= = =

Implementation of 3x3 filtering

10Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

weight = 1.0/8 * np.array([[0, 1, 0],
[1, 4, 1],
[0, 1, 0]])

for j in range(1, height - 1):
for i in range(1, width - 1):

sum = 0.0
for n in range(3):

for m in range(3):
sum += weight[n, m] * src[j + n - 1, i + m - 1]

dest[j, i] = int(saturate(sum))

Generates [1, 2, …, height - 2]
(a lazy way of boundary handling)

Unlike the mathematical definition, the
center coordinate of weight is not (0, 0)
but (1, 1)

02_filter3x3.py:

OpenCV functions for common filters

11Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

cv2.filter2D()

cv2.GaussianBlur()
cv2.Sobel()
cv2.Laplacian()
…

cv2.medianBlur()
cv2.dilate()
cv2.erode()
…

12Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Gaussian: most widely used smoothing kernel

• Discretized in space for
computation

• Coefficient values are
sometimes rounded to integer
(for efficiency)

• Amount of smoothing can be
controlled by parameter σ
(large σ requires large matrix
size)

separable
in x and y

13Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Frequency-domain understanding

: 2-D discrete Fourier transform

0 1 0

1 4 1

0 1 0

Recall: Fourier transform of Gaussian function is Gaussian

(zero-padded
to 256x256 and)

02_filter3x3_fft.py:

14Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Edge Detection

• Spatial differentiation (approximated by finite difference)
0 0 0

-1 0 1

0 0 0

0 -1 0

0 0 0

0 1 0

1st order diff. in x direction 1st order diff. in y direction

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

• Often combined with smoothing:

Sobel filter in x direction Sobel filter in y direction

15Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Edge detection by 2nd order derivative

• Edge = zero crossing of 2nd order
derivative

• Laplacian ∂2/∂x2 + ∂2/∂y2 is the
lowest-order isotropic differential
operator

• does not depend on direction of edges

• Laplacian operator is realized by adding 2nd order
differentials fi+1 – 2 fi + fi – 1 of x and y directions

0 1 0

1 –4 1

0 1 0

16Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Sharpening

Subtract the Laplacian image
from the original image to yield
an edge-enhanced image

0 -1 0

-1 5 -1

0 -1 0

0 0 0

0 1 0

0 0 0

0 1 0

1 –4 1

0 1 0
– =

17Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Frequency-domain visualization

1 2 1

0 0 0

-1 -2 -1

0 1 0

1 -4 1

0 1 0

DC in y direction

highest frequency
in y direction

Q: Why is Sobel a band-pass filter instead of high-pass?

Laplacian:

Sobel:

Deep Convolutional Neural Networks

18Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012.

Image to Image

19Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

image image

{ Fx,y } { Gx,y }

point operation
Gi,j depends only on Fi,j

local operation / neighboring operation
Gi,j depends on pixels within some neighborhood of Fi,j

global operation
Gi,j depends on almost all the pixels in { Fi,j }

Global operation example: Warping

20Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

{ Fx,y } { Gx,y }

• Gx,y is sampled from Fx’,y’ where (x’, y’) is determined from
(x, y)

02_warp.py:

Important Geometric Transforms

21Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Translation

Similarity Transform

Affine Transform

Homography Transform
(Perspective Transform)

(Collineation)

Understanding Homography (1/3)

22Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

x

y

Z

camera’s
optical center

O

object point
(X, Y, Z)T

image point
(x, y)T

X

Y

f: focal length

X-Y-Z: camera coordinate frame
x-y: (normalized) image coordinate frame

O
f Z

X
x

u

v

u-v: image coordinate
(pixel coordinate) frame

Understanding Homography (2/3)

23Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

A: 3x3 camera intrinsic matrix

R: 3x3 rotation matrix
t: 3D translation vector

By substituting into

For an arbitrary object coordinate frame X’-Y’-Z’,

Understanding Homography (3/3)

24Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Z

O

object point (X', Y', 0)T

X

Y

• H determines bijective mapping between (u, v) and (X’, Y’)
• H is computed when n (n ≥ 4) corresponding points are given

u

v

When the object point is on a plane,
its coordinate is assumed to be (X’, Y’, 0)
without loss of generality

Homography Warping by OpenCV

25Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

src_pnts = np.array([[100, 100],
[200, 100],
[200, 200],
[100, 200]],
np.float32)

dest_size = 256
dest_pnts = np.array([[0, 0],

[dest_size - 1, 0],
[dest_size - 1, dest_size - 1],
[0, dest_size - 1]],
np.float32)

H = cv2.getPerspectiveTransform(src_pnts, dest_pnts)

output = cv2.warpPerspective(input, H, (dest_size, dest_size))

4 points [X, Y]’s

4 points [X’, Y’]’s

02_warp.py:

Image to Image

26Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

image image

{ Fx,y } { Gx,y }

point operation
Gi,j depends only on Fi,j

local operation / neighboring operation
Gi,j depends on pixels within some neighborhood of Fi,j

global operation
Gi,j depends on almost all the pixels in { Fi,j }

(thresholding, pixel value conversion, …)

Color Image Representation

27Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

B0,0 B1,0

B0,1 B1,1

B0,N-1 B1,N-1

G0,0

G0,1

G0,N-1

R0,0

R0,1

R0,N-1

G1,0

G1,1

G1,N-1

R1,0

R1,1

R1,N-1

x axis

y axis

single pixel = consecutive 3 bytes

Representation in OpenCV for Python (NumPy)

28Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

fruits = cv2.imread('fruits.jpg')
fruits.shape

-> (480, 512, 3)

fruits[100, 100]
-> array([52, 98, 116], dtype=uint8)

fruits[100, 100, 0]
-> 52

(Y, X) array with 3 channels (or, (Y, X, 3) tensor) is used

29Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

RGB Color Space
Why R, G, and B?

• Our eyes have three types of wavelength-sensitive
cells (cone cells)

• cf. rod cells
• So, the color space we perceive is three-dimensional

http://commons.wikimedia.org/wiki/File:Cone-response.png

30Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Other Color Spaces

XYZ, L*a*b, L*u*v
defined by CIE (Commission Internationale de l‘Eclairage)

YIQ, YUV, YCbCr
used in video standards (NTSC, PAL, …)

HSV (HSI, HSL)
based on Munsell color system

cf. CMY, CMYK (for printing; subtractive color mixture)

output = cv2.cvtColor(input, cv2.COLOR_BGR2HSV)

31Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

HSV Color Space

value = 1

value = 2/3

value = 1/3

red

yellowgreen

cyan

blue magenta

Saturation
Hue

Value

Common Definition: 0 ≤ Hue ≤ 360, 0 ≤ Saturation ≤ 1, 0 ≤ Value ≤ 1
OpenCV (uint8): 0 ≤ Hue ≤ 180, 0 ≤ Saturation ≤ 255, 0 ≤ Value ≤ 255

02_hsv_illustrated.py
02_convert_color.py

References

32Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2020 (2)

Reference manuals for OpenCV and NumPy are in:
• https://docs.opencv.org/
• http://www.numpy.org/

• R. Szeliski: Computer Vision: Algorithms and Applications, Springer,
2010. (コンピュータビジョン，アルゴリズムと応用, 共立出版, 2013)

• A. Kaehler, G. Bradski: Learning OpenCV 3, O’Reilly, 2017. (詳解
OpenCV 3, オライリー・ジャパン, 2018)

• ディジタル画像処理編集委員会, ディジタル画像処理, CG-ARTS協会,
2015.

	Intelligent Control Systems��Image Processing (2)�— Filtering, Geometric Transforms and Colors —
	Notes on Attending This Online Class
	Taxonomy
	Image to Image
	Image to Image
	Local operation example: Spatial Filter
	Important Example: Smoothing
	Linear Spatial Filtering
	Examples of 3x3 smoothing weight matrices
	Implementation of 3x3 filtering
	OpenCV functions for common filters
	Gaussian: most widely used smoothing kernel
	Frequency-domain understanding
	Edge Detection
	Edge detection by 2nd order derivative
	Sharpening
	Frequency-domain visualization
	Deep Convolutional Neural Networks
	Image to Image
	Global operation example: Warping
	Important Geometric Transforms
	Understanding Homography (1/3)
	Understanding Homography (2/3)
	Understanding Homography (3/3)
	Homography Warping by OpenCV
	Image to Image
	Color Image Representation
	Representation in OpenCV for Python (NumPy)
	RGB Color Space
	Other Color Spaces
	HSV Color Space
	References

