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Taxonomy
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input output

image
image                 image-to-image conversion
(2-D data)

1-D data             projection, histogram

scalar values      position, object label

example



Image to Image
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image image

{ Fx,y } { Gx,y }

point operation
Gi,j depends only on Fi,j

local operation / neighboring operation
Gi,j depends on pixels within some neighborhood of  Fi,j

global operation
Gi,j depends on almost all the pixels in { Fi,j }

(thresholding, pixel value conversion, …)



Image to Image
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image image

{ Fx,y } { Gx,y }

point operation
Gi,j depends only on Fi,j

local operation / neighboring operation
Gi,j depends on pixels within some neighborhood of  Fi,j

global operation
Gi,j depends on almost all the pixels in { Fi,j }
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Local operation example: Spatial Filter

{ Fx,y } { Gx,y }

Gx,y
{ Fi,j }, (i, j) ∈ Neighbor(x,y)

Gx,y depends on some neighborhood (e.g. 3×3, 5×5 pixels, 
etc.) of the point of interest (x,y)

Typical examples: smoothing, edge detection
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Important Example: Smoothing
• Output at (x, y): some representative value of the set of neighbor 

pixels around (x, y), e.g. mean, weighted mean, median
• Used for: e.g. noise reduction, scale-space processing

Gx,y
{ Fi,j }, (i, j) ∈ Neighbor(x,y)

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

(mean) (weighted mean)
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Linear Spatial Filtering
• Smoothing with (weighted) mean is an example of linear 

spatial filtering (while smoothing with median is nonlinear)
• Computed by convolving a weight matrix (filter coefficients, 

filter kernel, or mask) to input image

{ Fx,y } { Gx,y }

Gx,y
{ Fi,j }, (i, j) ∈ Neighbor(x,y)

weight matrix

pixel-wise multiplication
and summation 
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Examples of 3x3 smoothing weight matrices

1 1 1

1 2 1

1 1 1

0 1 0

1 4 1

0 1 0

1 1 1

1 1 1

1 1 1
1/9 1/10 1/8

1/10 1/10 1/10

1/10 1/5 1/10

1/10 1/10 1/10

0 1/8 0

1/8 1/2 1/8

0 1/8 0

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

= = =



Implementation of 3x3 filtering
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weight = 1.0/8 * np.array([[0, 1, 0],
[1, 4, 1], 
[0, 1, 0]])

for j in range(1, height - 1):
for i in range(1, width - 1):

sum = 0.0
for n in range(3):

for m in range(3):
sum += weight[n, m] * src[j + n - 1, i + m - 1]

dest[j, i] = int(saturate(sum))

Generates [1, 2, …, height - 2]
(a lazy way of boundary handling)

Unlike the mathematical definition, the 
center coordinate of weight is not (0, 0) 
but (1, 1)

02_filter3x3.py: 



OpenCV functions for common filters
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cv2.filter2D()

cv2.GaussianBlur()
cv2.Sobel()
cv2.Laplacian()
…

cv2.medianBlur()
cv2.dilate()
cv2.erode()
…
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Gaussian: most widely used smoothing kernel

• Discretized in space for 
computation

• Coefficient values are 
sometimes rounded to integer 
(for efficiency)

• Amount of smoothing can be 
controlled by parameter σ
(large σ requires large matrix 
size)

separable 
in x and y
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Frequency-domain understanding

: 2-D discrete Fourier transform

0 1 0

1 4 1

0 1 0

Recall: Fourier transform of Gaussian function is Gaussian

(zero-padded
to 256x256 and)

02_filter3x3_fft.py: 
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Edge Detection

• Spatial differentiation (approximated by finite difference)
0 0 0

-1 0 1

0 0 0

0 -1 0

0 0 0

0 1 0

1st order diff. in x direction 1st order diff. in y direction

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

• Often combined with smoothing: 

Sobel filter in x direction Sobel filter in y direction



15Shingo Kagami (Tohoku Univ.) Intelligent Control Systems  2020 (2)

Edge detection by 2nd order derivative

• Edge = zero crossing of 2nd order 
derivative  

• Laplacian ∂2/∂x2 + ∂2/∂y2 is the 
lowest-order isotropic differential 
operator

• does not depend on direction of edges

• Laplacian operator is realized by adding 2nd order 
differentials fi+1 – 2 fi + fi – 1 of x and y directions

0 1 0

1 –4 1

0 1 0



16Shingo Kagami (Tohoku Univ.) Intelligent Control Systems  2020 (2)

Sharpening

Subtract the Laplacian image 
from the original image to yield 
an edge-enhanced image 

0 -1 0

-1 5 -1

0 -1 0

0 0 0

0 1 0

0 0 0

0 1 0

1 –4 1

0 1 0
– = 
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Frequency-domain visualization

1 2 1

0 0 0

-1 -2 -1

0 1 0

1 -4 1

0 1 0

DC in y direction

highest frequency
in y direction

Q: Why is Sobel a band-pass filter instead of high-pass?

Laplacian:

Sobel:



Deep Convolutional Neural Networks
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Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep 
Convolutional Neural Networks, NIPS 2012.



Image to Image
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image image

{ Fx,y } { Gx,y }

point operation
Gi,j depends only on Fi,j

local operation / neighboring operation
Gi,j depends on pixels within some neighborhood of  Fi,j

global operation
Gi,j depends on almost all the pixels in { Fi,j }



Global operation example: Warping
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{ Fx,y } { Gx,y }

• Gx,y is sampled from Fx’,y’ where (x’, y’) is determined from 
(x, y) 

02_warp.py: 



Important Geometric Transforms
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Translation

Similarity Transform

Affine Transform

Homography Transform
(Perspective Transform)

(Collineation)



Understanding Homography (1/3) 
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x

y

Z

camera’s
optical center

O

object point 
(X, Y, Z)T

image point
(x, y)T

X

Y

f: focal length

X-Y-Z: camera coordinate frame
x-y: (normalized) image coordinate frame

O
f Z

X
x

u

v

u-v: image coordinate 
(pixel coordinate) frame



Understanding Homography (2/3)
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A: 3x3 camera intrinsic matrix

R: 3x3 rotation matrix
t: 3D translation vector

By substituting into

For an arbitrary object coordinate frame X’-Y’-Z’, 



Understanding Homography (3/3) 
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Z

O

object point (X', Y', 0)T

X

Y

• H determines bijective mapping between (u, v) and (X’, Y’)
• H is computed when n (n ≥ 4) corresponding points are given

u

v

When the object point is on a plane,
its coordinate is assumed to be (X’, Y’, 0) 
without loss of generality



Homography Warping by OpenCV
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src_pnts = np.array([[100, 100], 
[200, 100], 
[200, 200], 
[100, 200]], 
np.float32)

dest_size = 256
dest_pnts = np.array([[0, 0], 

[dest_size - 1, 0], 
[dest_size - 1, dest_size - 1], 
[0, dest_size - 1]], 
np.float32)

H = cv2.getPerspectiveTransform(src_pnts, dest_pnts)

output = cv2.warpPerspective(input, H, (dest_size, dest_size))

4 points [X, Y]’s

4 points [X’, Y’]’s

02_warp.py: 



Image to Image
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image image

{ Fx,y } { Gx,y }

point operation
Gi,j depends only on Fi,j

local operation / neighboring operation
Gi,j depends on pixels within some neighborhood of  Fi,j

global operation
Gi,j depends on almost all the pixels in { Fi,j }

(thresholding, pixel value conversion, …)



Color Image Representation
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B0,0 B1,0

B0,1 B1,1

B0,N-1 B1,N-1

G0,0

G0,1

G0,N-1

R0,0

R0,1

R0,N-1

G1,0

G1,1

G1,N-1

R1,0

R1,1

R1,N-1

x axis

y axis

single pixel = consecutive 3 bytes



Representation in OpenCV for Python (NumPy)

28Shingo Kagami (Tohoku Univ.) Intelligent Control Systems  2020 (2)

fruits = cv2.imread('fruits.jpg')
fruits.shape

-> (480, 512, 3)

fruits[100, 100]
-> array([ 52,  98, 116], dtype=uint8)

fruits[100, 100, 0]
-> 52

(Y, X) array with 3 channels (or, (Y, X, 3) tensor) is used
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RGB Color Space
Why R, G, and B?

• Our eyes have three types of wavelength-sensitive 
cells (cone cells)

• cf. rod cells
• So, the color space we perceive is three-dimensional

http://commons.wikimedia.org/wiki/File:Cone-response.png
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Other Color Spaces

XYZ, L*a*b, L*u*v
defined by CIE (Commission Internationale de l‘Eclairage)

YIQ, YUV, YCbCr
used in video standards (NTSC, PAL, …)

HSV (HSI, HSL)
based on Munsell color system

cf. CMY, CMYK (for printing; subtractive color mixture)

output = cv2.cvtColor(input, cv2.COLOR_BGR2HSV)
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HSV Color Space

value = 1

value = 2/3

value = 1/3

red

yellowgreen

cyan

blue magenta

Saturation
Hue

Value

Common Definition: 0 ≤ Hue ≤ 360, 0 ≤ Saturation ≤ 1, 0 ≤ Value ≤ 1
OpenCV (uint8): 0 ≤ Hue ≤ 180, 0 ≤ Saturation ≤ 255, 0 ≤ Value ≤ 255

02_hsv_illustrated.py
02_convert_color.py



References
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Reference manuals for OpenCV and NumPy are in:
• https://docs.opencv.org/
• http://www.numpy.org/

• R. Szeliski: Computer Vision: Algorithms and Applications, Springer, 
2010. (コンピュータビジョン，アルゴリズムと応用, 共立出版, 2013)

• A. Kaehler, G. Bradski: Learning OpenCV 3, O’Reilly, 2017. (詳解
OpenCV 3, オライリー・ジャパン, 2018)

• ディジタル画像処理編集委員会, ディジタル画像処理, CG-ARTS協会, 
2015. 
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