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Tracking of “a Point” 

To track a point  
= To determine the motion vector of a point from a frame to 

its next frame (discrete time) 
' To determine the velocity vector of a point (continuous 

time) 
 

• Distribution of the motion vectors over the image is 
called optical flow 

• dense optical flow 
• sparse optical flow 

 
• Sometimes the terms “motion vector” and “optical flow” 

are used interchangeably (depending on the context) 
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Optical Flow Constraint 

x 

y 

Assuming that the intensity of the tracked point is constant,  

Ignoring the 2nd order or higher terms ² yields 

This single equation is not 
enough to determine the two 
components 

[Horn and Schunck 1981] 

Note: we don’t distinguish infinitesimal dx and finite ¢x in today’s lecture note 
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Interpretation of the Constraint 

With 

Only the component in the 
direction of the gradient vector is 
determined (aperture problem) 

unit 
gradient 
vector 

where  is a unit vector 
parallel to  
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Additional Assumptions 

Thus we cannot determine the optical flow from Ix, Iy and It.  
Additional assumptions are needed. 
 

ex1) Optical flow changes smoothly in space 
•  [Horn and Schunck 1981] 

 
ex2) Optical flow is constant within a small 

neighborhood of a point 
• We will investigate this in the followings 
• So, what we call “point tracking” is actually 

“patch (block) tracking” 
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Block Matching 

Slides reference block through search region and compare 
• How to compare?: by computing evaluation functions 

Input Image Ix,y 

t t + dt 

reference block 
(template)  Tx,y 

search region 

x 

y 

x 

y 

(When you are sure the incoming images only translate, you 
can use a fixed T.  Otherwise T is updated every frame) 
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Evaluation Functions 

: sum of squared differences 
! min 

: sum of absolute differences 
! min 

: cross correlation  
! max 

: normalized cross correlation 
! max 

average 

Note: Tx,y and Ix,y are short for T(x,y) and I(x,y) here (Not derivative!) 
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Utilize Gradients to Explore the Solution 

(-dx, -dy) 

T(x,y) := I(x, y, t) I(x,y) := I(x, y, t + dt) 

t t + dt 

From the intensity constancy assumption,  

Achieve this by minimizing SSD:  

x 

y 

x 

y 
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Using 1st order Taylor expansion of T(x, y),  

To minimize E, derivative of E w.r.t. (dx, dy) is equated to 0 
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Then, (dx, dy) is obtained by solving this linear equation 
(Lucas-Kanade method [Lucas and Kanade 1981]) 

• (dx, dy) is only approximately obtained because of the 1st 
order Taylor approximation. We often need to iteratively run 
the above process by setting I(x, y) := I(x - dx, y - dy) to 
obtain a good result 



Gauss-Newton Method 
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Lucas-Kanade method can be viewed as an application of 
Gauss-Newton method (an iterative non-linear optimization 
method for least square problems).  



Generalization 
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Formulations for more general image transformations 

e.g.  
• translation + rotation (3 dof) 
• translation + rotation + magnification (4 dof) 
• affine transformation (6 dof) 
• perspective transformation (8 dof) 

x: transform parameters 
w(x): warp function 
         (i.e. how x and y coordinates change w.r.t. params) 



Generalization 
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Other optimization methods 
 

• Levenberg-Marquardt method 

• Efficient Second-order Minimization method [Banhimane and Malis 
2007] 

I: identity matrix 
¸: scalar coefficient 
     (small ¸: Gauss-Newton, large ¸: steepest descent) 

J1: derivative of template image w.r.t. param.  
J2: derivative of current warped image w.r.t. param. 
(Possible when parametrized with special care) 
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What is Good Point to Track 

A 

C 

B 

Recall that we aggregate many flows within a small block to 
obtain enough constraints 

A: Block with constant intensity is not suitable (0 constraint) 
B: Block including only edges with the same direction is 

also not suitable (essentially 1 constraint)  
How to find a block like C? 
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Consider two blocks 
• around a point of interest (x0, y0) 
• around the point (x0 + dx, y0 + dy) 

These two blocks should not resemble each other for any 
choice of (dx, dy) 
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Let’s measure how they do not resemble by SSD 

With 1st order Taylor expansion,  
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dx 

dy 

E(dx,dy) = 1 

E(dx,dy) 

is an ellipse in (dx, dy) plane.  This ellipse should be as small 
as possible and should be close to true circle. 

i.e.: Eigenvalues ¸1, ¸2 of H should be large enough and 
close to each other. 

Compatible with numerical stability in solving 
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(Just in case you forget linear algebra) 

Noting that H is symmetric, H can be diagonalized by an 
orthonormal matrix P (i.e. P-1 = PT)  so that PT H P = diag(λ1, λ2) 

Viewed in a new coordinate system  z = PT (dx, dy)T 

Or, equivalently 
z1 

z2 
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Feature Point Detector 

flat edge 

ed
ge

 

feature 
point 

1λ

2λHarris operator 
[Harris and Stephens 1988] 

Good Features to Track 
[Tomasi and Kanade 1991] 

det H – k(tr H)2 

These “good” points for 
tracking and/or matching are 
called feature point, interest 
point, keypoint and so on. 

¸1 
¸2 



Other Feature Point Detectors 
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SIFT detector [Lowe 2004] 
• Build a Gaussian scale space and apply (an approximate) 

Laplacian operator in each scale 
• Detect extrema of the results (i.e. strongest responses among 

their neighbor in space as well as in scale) 
• Eliminate edge responses 
• (Often followed by encoding of edge orientation histogram in the 

neighborhood into a fixed-size vector, called a feature point 
descriptor, which can be compared with each other by Euclidean 
distance) 

FAST detector [Rosten et al. 2010] 

• Heuristics based on pixel values along a surrounding circle 
• Optimized for speed and quality by machine learning approach 
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Lucas-Kanade method applied to “Good-features-to-track” 
points is often called KLT (Kanade-Lucas-Tomasi) tracker 
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Summary 

• Tracking of a Point 
• is an ill-posed problem 
• a block is often considered instead of a point 

 
• Block Matching 

• full-search optimization of an evaluation function 
• SSD, SAD, (normalized) cross correlation 

 
• Lucas-Kanade method 

• a Gradient method for optimization of SSD 
 

• Feature Point Detector 
• Harris operator, Good feature to track 
• KLT tracker 
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Sample codes are available at  http://www.ic.is.tohoku.ac.jp/~swk/lecture/  


