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Outline 

• Temporal Image Processing 
 
 

• Color Image Processing 
 
 

• Binary Image Processing 
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Simple Example: Frame Difference 
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Outline 

• Temporal Image Processing 
 
 

• Color Image Processing 
 
 

• Binary Image Processing 
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8-bit Grayscale Image (CV_8U) 

F0,0 F1,0 F2,0 FM-1,0 

F0,1 F1,1 F2,1 FM-1,1 

F0,N-1 F1,N-1 F2,N-1 FM-1,N-1 

x axis 

y axis 

single pixel = 1 byte 
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24-bit Color Image (CV_8UC3) 
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single pixel = consecutive 3 bytes 
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Accessing a Color Pixel Value 

 cv::Mat input = cv::imread("lena.jpg", cv::IMREAD_COLOR); 
 … 
 
 for (j = 0; j < height; j++) { 
     for (i = 0; i < width; i++) { 
         cv::Vec3b pixel = input.at<cv::Vec3b>(j, i); 
         uchar blue  = pixel[0]; 
         uchar green = pixel[1]; 
         uchar red   = pixel[2]; 
         … 
     } 
 } 
 … 
 

Class of consecutive 3 bytes 

operator[] is overloaded so 
that each component is 
accessed 
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RGB Color Space 
Why R, G, and B? 

• Our eyes have three types of wavelength-sensitive 
cells (cone cells) 

• cf. rod cells 
• So, the color space we perceive is three-dimensional 

http://commons.wikimedia.org/wiki/File:Cone-response.png 
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Other Color Spaces 

XYZ, L*a*b, L*u*v 
defined by CIE (Commission Internationale de l‘Eclairage) 

YIQ, YUV, YCbCr 
used in video standards (NTSC, PAL, …) 

HSV (HSI, HSL) 
based on Munsell color system 
 

cf. CMY, CMYK (for printing; subtractive color mixture) 

cv::cvtColor(input, output, CV_BGR2HSV); 
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HSV Color Space 
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yellow green 

cyan 

blue magenta 

Saturation 
Hue 

Value 

value = 1 

value = 2/3 
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Commonly Used Pixel (Color) Formats 

12 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems  2016 (4) 

Graylevel image: 
• CV_8U:    unsigned char (a byte);  0 to 255 
• CV_16S:  signed short (2 bytes);   0 to 32767 
• CV_32F:  float (4 bytes);                0.0 to 1.0 

 
BGR color image: 

• CV_8UC3: 
• CV_16SC3:     same as above for each channel 
• CV_32FC3: 
 

HSV color image: 
• CV_8UC3:  0 · H · 180, 0 · S · 255, 0 · V · 255  
• CV_32FC3: 0 · H · 360, 0 · S · 1, 0 · V · 1  

negative values possible 
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Notes for cv::Mat data 

cv::Mat image1(480, 640, CV_8U); 
cv::Mat image2, image3; 
 
cv::Laplacian(image1, image2, CV_8U); 
image2 = image1; 
image1.copyTo(image3); 

Some parts of the sample codes may seem strange if you are 
not familiar with OpenCV.  It is important to understand:  

• In C++, operators can be overloaded and thus even 
operator= can be overloaded 

• OpenCV defines operator= of cv::Mat so that the 
image data are not copied but shared 

• When an image data region becomes shared by no 
cv::Mat, OpenCV automatically removes the region 
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image1 image2 image3 

image1 image2 image3 

image1.data 

cv::Mat image1(480, 640, CV_8U); cv::Mat image2, image3; 

cv::Laplacian(image1, image2, CV_8U); 

automatically 
allocated 
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image1 image2 image3 

image1 image2 image3 

image2 = image1; 

image1.copyTo(image3); 

automatically 
removed 

not copied 
but shared 

automatically 
allocated copied 
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Outline 

• Temporal Image Processing 
 
 

• Color Image Processing 
 
 

• Binary Image Processing 
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Binary Image Processing 

Processing of binary images is highly developed in a 
distinctive way other than grayscale/color image processing, 
because 

• It found important specific applications (e.g. document 
processing) 

• geometrically rigorous discussion is possible 
 
 

We have to introduce Digital Geometry: 
• Because an image is discretized into pixels, 

conventional concepts of geometry for continuous 
shapes (e.g. connectivity, distance) may not be used 
just as they are. 
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Connectivity 
neighbor: set of pixels that are near the pixel of interest.  
Many definitions are possible, e.g. 

4-neighbor 8-neighbor 

n-adjacent: If two pixels are in n-neighbor of each other, we 
say they are n-adjacent   

n-neighbor connected: If there exists a sequence of pixels p0, 
p1, p2, , pn-1, pn where all the pi have the same pixel value 
and pi and pi+1 is n-adjacent, we say the pixels in this 
sequence are n-neighbor connected 
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Morphological Operations 

dilation: “becomes 1 if any of neighbor pixels are 1” 

erosion: “becomes 0 if any of neighbor pixels are 0” 

opening: erosion, then dilation 

closing: dilation, then erosion 

Gi,j = Fi,j | Fi-1,j  | Fi+1,j | Fi,j-1 | Fi,j+1 

Gi,j = Fi,j & Fi-1,j & Fi+1,j & Fi,j-1 & Fi,j+1 

(4-neighbor) 

(4-neighbor) 

Note: These are nonlinear local operatoins 
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Connected Component Labeling 
• Or simply “Labeling” for short 
• Segments an image into connected components and give each 

component a unique number (label) 
• An image whose pixel values are labels is called a label image 

Example Algorithm for 4-neighbor connectivity 
• Scan the image from top-left to bottom-right to process “1” pixels 

• If a label has been assigned to either of the upper or left pixels, 
assign the same label to the current pixel 

• If the upper and the left pixels have different labels, one 
of them (say, the smaller one) is assigned to the current 
pixel, and record that both labels refer to the same 
component to a connectivity table. 

• If none of the upper and the left pixels have labels, a new label 
is assigned to the current pixel.  

• Scan the image again to update the labels referring to the table 
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Shape Features 

Moment features 

0th order moment: i.e. area 
(for binary images) 

1st order moment in x direction 

1st order moment in y direction 

Center of Gravity is computed from 0th and 1st order moments 
    (gx, gy) = (m1,0/m0,0, m0,1/m0,0) 
 
Higher order moments convey more complicated shape 
information 
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Notes for std::vector 

• std::vector is part of C++ Standard Template Library (STL) 
• can be used as a better array 

• Many other convenient containers are also available: 
• list, queue, stack, deque, map, … 

std::vector<int> array;  
array.push_back(100); 
array.push_back(120); 
array.push_back(130); 
 
array[2] = array[2] + 50; 
 
printf("array[2] = %d¥n", array[2]); 
printf("size of array: %d¥n", array.size()); 

extends automatically 

can be used almost like an array 

prints 180 
prints 3 
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What’s the common way in OpenCV? 

• So far, connected component labeling seems not provided 
as standard functions of OpenCV 
 

• Contour retrieval using a border following algorithm can be 
used for similar purpose.  See: 
•cv::findContours() 
• You can analyze the shape of a retrieved contour by e.g. 

•cv::arcLength() 
•cv::boundingRect() 
•cv::contourArea() 
•… 
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Summary 

• Simple example of video processing 
• frame difference 
 

• Color Image Processing 
• cv::Mat for color images 
• color spaces 

• RGB, HSV, … 
 

• Binary Image Processing 
• connectivity 
• morphological operations 

• dilation, erosion, opening, closing 
• connected component labeling 
• moment features 
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Sample codes are available at 
http://www.ic.is.tohoku.ac.jp/~swk/lecture/  

 


