
Intelligent Control Systems

Image Processing (3)
—Temporal Operations, Color and Binary Images —

Shingo Kagami
Graduate School of Information Sciences,

Tohoku University
swk(at)ic.is.tohoku.ac.jp

http://www.ic.is.tohoku.ac.jp/ja/swk/

2 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Image Processing Classification

input output

image

image
sequence

image image to image processing
(2-D data) Fourier trans., label image

1-D data projection, histogram

scalar values position, recognition

image motion image processing
sequence
image
1-D data
scalar

example

3 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Outline

• Temporal Image Processing

• Color Image Processing

• Binary Image Processing

4 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Simple Example: Frame Difference

input

output

t

– + – + – + – + – + – +

5 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Outline

• Temporal Image Processing

• Color Image Processing

• Binary Image Processing

6 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

8-bit Grayscale Image (CV_8U)

F0,0 F1,0 F2,0 FM-1,0

F0,1 F1,1 F2,1 FM-1,1

F0,N-1 F1,N-1 F2,N-1 FM-1,N-1

x axis

y axis

single pixel = 1 byte

7 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

24-bit Color Image (CV_8UC3)

B0,0 B1,0

B0,1 B1,1

B0,N-1 B1,N-1

G0,0

G0,1

G0,N-1

R0,0

R0,1

R0,N-1

G1,0

G1,1

G1,N-1

R1,0

R1,1

R1,N-1

x axis

y axis

single pixel = consecutive 3 bytes

8 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Accessing a Color Pixel Value

 cv::Mat input = cv::imread("lena.jpg", cv::IMREAD_COLOR);
 …

 for (j = 0; j < height; j++) {
 for (i = 0; i < width; i++) {
 cv::Vec3b pixel = input.at<cv::Vec3b>(j, i);
 uchar blue = pixel[0];
 uchar green = pixel[1];
 uchar red = pixel[2];
 …
 }
 }
 …

Class of consecutive 3 bytes

operator[] is overloaded so
that each component is
accessed

9 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

RGB Color Space
Why R, G, and B?

• Our eyes have three types of wavelength-sensitive
cells (cone cells)

• cf. rod cells
• So, the color space we perceive is three-dimensional

http://commons.wikimedia.org/wiki/File:Cone-response.png

10 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Other Color Spaces

XYZ, L*a*b, L*u*v
defined by CIE (Commission Internationale de l‘Eclairage)

YIQ, YUV, YCbCr
used in video standards (NTSC, PAL, …)

HSV (HSI, HSL)
based on Munsell color system

cf. CMY, CMYK (for printing; subtractive color mixture)

cv::cvtColor(input, output, CV_BGR2HSV);

11 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

HSV Color Space

red

yellow green

cyan

blue magenta

Saturation
Hue

Value

value = 1

value = 2/3

value = 1/3

Commonly Used Pixel (Color) Formats

12 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Graylevel image:
• CV_8U: unsigned char (a byte); 0 to 255
• CV_16S: signed short (2 bytes); 0 to 32767
• CV_32F: float (4 bytes); 0.0 to 1.0

BGR color image:

• CV_8UC3:
• CV_16SC3: same as above for each channel
• CV_32FC3:

HSV color image:
• CV_8UC3: 0 · H · 180, 0 · S · 255, 0 · V · 255
• CV_32FC3: 0 · H · 360, 0 · S · 1, 0 · V · 1

negative values possible

13 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Notes for cv::Mat data

cv::Mat image1(480, 640, CV_8U);
cv::Mat image2, image3;

cv::Laplacian(image1, image2, CV_8U);
image2 = image1;
image1.copyTo(image3);

Some parts of the sample codes may seem strange if you are
not familiar with OpenCV. It is important to understand:

• In C++, operators can be overloaded and thus even
operator= can be overloaded

• OpenCV defines operator= of cv::Mat so that the
image data are not copied but shared

• When an image data region becomes shared by no
cv::Mat, OpenCV automatically removes the region

14 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

image1 image2 image3

image1 image2 image3

image1.data

cv::Mat image1(480, 640, CV_8U); cv::Mat image2, image3;

cv::Laplacian(image1, image2, CV_8U);

automatically
allocated

15 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

image1 image2 image3

image1 image2 image3

image2 = image1;

image1.copyTo(image3);

automatically
removed

not copied
but shared

automatically
allocated copied

16 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Outline

• Temporal Image Processing

• Color Image Processing

• Binary Image Processing

17 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Binary Image Processing

Processing of binary images is highly developed in a
distinctive way other than grayscale/color image processing,
because

• It found important specific applications (e.g. document
processing)

• geometrically rigorous discussion is possible

We have to introduce Digital Geometry:
• Because an image is discretized into pixels,

conventional concepts of geometry for continuous
shapes (e.g. connectivity, distance) may not be used
just as they are.

18 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Connectivity
neighbor: set of pixels that are near the pixel of interest.
Many definitions are possible, e.g.

4-neighbor 8-neighbor

n-adjacent: If two pixels are in n-neighbor of each other, we
say they are n-adjacent

n-neighbor connected: If there exists a sequence of pixels p0,
p1, p2, , pn-1, pn where all the pi have the same pixel value
and pi and pi+1 is n-adjacent, we say the pixels in this
sequence are n-neighbor connected

19 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Morphological Operations

dilation: “becomes 1 if any of neighbor pixels are 1”

erosion: “becomes 0 if any of neighbor pixels are 0”

opening: erosion, then dilation

closing: dilation, then erosion

Gi,j = Fi,j | Fi-1,j | Fi+1,j | Fi,j-1 | Fi,j+1

Gi,j = Fi,j & Fi-1,j & Fi+1,j & Fi,j-1 & Fi,j+1

(4-neighbor)

(4-neighbor)

Note: These are nonlinear local operatoins

20 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Connected Component Labeling
• Or simply “Labeling” for short
• Segments an image into connected components and give each

component a unique number (label)
• An image whose pixel values are labels is called a label image

Example Algorithm for 4-neighbor connectivity
• Scan the image from top-left to bottom-right to process “1” pixels

• If a label has been assigned to either of the upper or left pixels,
assign the same label to the current pixel

• If the upper and the left pixels have different labels, one
of them (say, the smaller one) is assigned to the current
pixel, and record that both labels refer to the same
component to a connectivity table.

• If none of the upper and the left pixels have labels, a new label
is assigned to the current pixel.

• Scan the image again to update the labels referring to the table

21 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

1 1 1
2 2

2 2 2 2

2 2 2 2
2 2

3 3 3

3 3
4 4 4 3 3

3  4

22 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Shape Features

Moment features

0th order moment: i.e. area
(for binary images)

1st order moment in x direction

1st order moment in y direction

Center of Gravity is computed from 0th and 1st order moments
 (gx, gy) = (m1,0/m0,0, m0,1/m0,0)

Higher order moments convey more complicated shape
information

23 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Notes for std::vector

• std::vector is part of C++ Standard Template Library (STL)
• can be used as a better array

• Many other convenient containers are also available:
• list, queue, stack, deque, map, …

std::vector<int> array;
array.push_back(100);
array.push_back(120);
array.push_back(130);

array[2] = array[2] + 50;

printf("array[2] = %d¥n", array[2]);
printf("size of array: %d¥n", array.size());

extends automatically

can be used almost like an array

prints 180
prints 3

24 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

What’s the common way in OpenCV?

• So far, connected component labeling seems not provided
as standard functions of OpenCV

• Contour retrieval using a border following algorithm can be
used for similar purpose. See:
•cv::findContours()
• You can analyze the shape of a retrieved contour by e.g.

•cv::arcLength()
•cv::boundingRect()
•cv::contourArea()
•…

25 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

Summary

• Simple example of video processing
• frame difference

• Color Image Processing
• cv::Mat for color images
• color spaces

• RGB, HSV, …

• Binary Image Processing
• connectivity
• morphological operations

• dilation, erosion, opening, closing
• connected component labeling
• moment features

26 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (4)

References

• R. Szeliski: Computer Vision: Algorithms and Applications, Springer, 2010.
• A. Hornberg eds.: Handbook of Machine Vision, Wiley-VCH, 2006.
• G. Bradski and A. Kaebler: Learning OpenCV, O‘Reilly, 2008.
• OpenCV Documentation: http://docs.opencv.org/index.html

(in Japanese)
• ディジタル画像処理編集委員会, ディジタル画像処理, CG-ARTS協会, 2015.
• 田村: コンピュータ画像処理, オーム社, 2002.

Sample codes are available at
http://www.ic.is.tohoku.ac.jp/~swk/lecture/

