
Intelligent Control Systems

Speeding-up Techniques of Image Processing

Shingo Kagami
Graduate School of Information Sciences,

Tohoku University
swk(at)ic.is.tohoku.ac.jp

http://www.ic.is.tohoku.ac.jp/ja/swk/

2Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Fast Image Processing

• We have learned basics of image processing and a few
standard methods of visual tracking

• In some respects, we have ignored performance issues
• The same computation may be achieved by different

algorithms
• The same algorithm may become fast or slow

depending on the way it is coded

• Bearing in mind real-time applications (e.g. visual
servoing), we will learn speeding-up techniques for image
processing

3Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Algorithm Choice Example: Gaussian Filter

• m×

n kernel convolution requires
computational time proportional to
mn for each pixel

• When the kernel is separable as wx,y = ux vy , the cost
becomes proportional to m + n:

e.g.:

4Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Besides Algorithm Choices

• The most important thing is to choose good algorithms
• Fast Fourier Transform
• separable filters
• nonlinear optimization (vs. full search)

• Even if the same algorithm is used, performance can be
significantly affected by implementation

• Let’s see how a simple sample program can be speeded up:

Highlighting frame difference of 640x480 images
•Using OpenCV functions: 1 ~ 2 ms
•Naive Implementation: 2 ~ 3 ms

5Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Highlighting Frame Difference: Algorithm
Images input, gray, prev_gray, output;

Repeat {
// color conversion from BGR to Gray
for each (i,j) {

gray(i,j) := BGR2GRAY(input(i,j))
}
// take frame difference and highlight
for each (i,j) {

output(i,j) :=
blue, |gray(i,j) – prev_gray(i,j)| > threshold
gray(i,j), otherwise

}
// save current frame
for each (i,j) {

prev_gray(i,j) := gray(i,j)
}

}

6Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

How to Measure Elapsed Time

double t_begin = (double)cv::getTickCount();
/* the code to be measured */
double t_end = (double)cv::getTickCount();
double delta_in_ms =
1000.0 * (tick_end - tick_begin) / cv::getTickFrequency();

Using OpenCV functions:

Or, you can use my library stattimer (Get stattimer.hpp from
http://code.google.com/p/stattimer/ and put it somewhere in your include path):

#include "stattimer.hpp"
STimerList st;

st.start("label1");
/* the code to be measured */
st.stop("label1");

The results are reported when the program finishes

7Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Outline

• Local Optimization of Coding

• Pixel Access Methods

• Loop Optimization

• Parallel Processing

8Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Common Sense: What are slow?

fast slow

integer operations >>> floating point operations

add, sub, logic >> multiplication >>>>>>>> division

arithmetic/logic >> jump >>> function call

arithmetic/logic >>>>>>> memory access

local/continuous memory access >>>> global/random access

mutually-independent instructions >>> dependent instructions
superscalar pipeline principle

cache memory principle

pipeline hazard stack®ister operation overhead

9Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Tech. 1: Table Lookup

• If an expensive operations can be done beforehand and the
results can be stored in memory, the operations can be
replaced by table lookups

integer operations >>> floating point operations
add, sub, logic >> multiplication >>>>>>>> division

arithmetic/logic >>>>>>> memory access

arithmetic/logic >> jump >>> function call

... = (r * 306 + g * 601 + b * 117) / 1024;

... = (b2gray[b] + g2gray[g] + r2gray[r]) / 1024;

Pros: reduces costly operations
Cons: increases memory access

10Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Tech. 2: Strength Reduction

• The same algorithm may be achieved by weaker (less
computationally expensive) operations

add, sub, logic >> multiplication >>>>>>>> division
arithmetic/logic >> jump >>> function call

if (diff > 30 || diff < -30) {
img.at<cv::Vec3b>(j, i)[0] = 255;
img.at<cv::Vec3b>(j, i)[1] = 0;

} else {
img.at<cv::Vec3b>(j, i)[0] = g;
img.at<cv::Vec3b>(j, i)[1] = g;

}

int active = ((diff > 30 || diff < -30) && 255);
img.at<cv::Vec3b>(j, i)[0] = g | active;
img.at<cv::Vec3b>(j, i)[1] = g & ~active;

11Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Tech. 3: Bulk Memory Copy

• Instead of copying pixels by iterating through the memory,
you can try memcpy

• Using this is possible only when the copied data are stored in
a continuous area of memory

• e.g.: To copy a sub rectangle in an image, memcpy must
be done line by line

•memset sometimes will be also useful

12Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Results (each part)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

bgr2gray OpenCV

bgr2gray calc

bgr2gray lut

highlight diff OpenCV

highlight diff logical

highlight diff if-else

copy OpenCV

copy pixelwise

copy by memcpy

tim
e

[m
s]

• Spec: Core i7-4600U 2.1 GHz, 16 GB memory
• Some work better; Some work worse!

Errorbars show standard deviations

13Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Note: Row or Column Major Access

row major

column major

local/continuous memory access >>>> global/random access

for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {

image.at<uchar>(j, i) = ...

}
}

for (i = 0; i < width; i++) {
for (j = 0; j < height; j++) {

image.at<uchar>(j, i) = ...

}
}

cv::Mat stores data in row-major order

14Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Results (each part)

 0

 0.5

 1

 1.5

 2

 2.5

bgr2gray calc

bgr2gray lut

highlight diff logical

highlight diff if-else

copy pixelwise

bgr2gray calc

bgr2gray lut

highlight diff logical

highlight diff if-else

copy pixelwise

tim
e

[m
s]

row major column major

15Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Outline

• Local Optimization of Coding

• Pixel Access Methods

• Loop Optimization

• Parallel Processing

16Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Tech. 4: Pixel Access Methods

add, sub, logic >> multiplication >>>>>>>> division

for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {

image.at<uchar>(j, i) = ...

}
}

for (j = 0; j < height; j++) {
uchar *ptr = image.ptr<uchar>(j);
for (i = 0; i < width; i++) {

ptr[i] = ...
}

}

width * j + i

ptr + i

0
1
2
3

j

image

image.ptr<..>(j)

17Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Results (each part)

 0

 0.5

 1

 1.5

 2

 2.5

bgr2gray OpenCV

bgr2gray calc

bgr2gray pixel access by ptr

highlight diff OpenCV

highlight diff if-else

highlight diff pixel access by ptr

highlight diff pixel access by ptr (bulk)

tim
e

[m
s]

In my environment (Visual Studio 2012), treating a color pixel (cv::Vec3b)
in bulk like outp[i] = cv::Vec3b(255, 0, 0);
is ridiculously slow

18Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Outline

• Local Optimization of Coding

• Pixel Access Methods

• Loop Optimization

• Parallel Processing

19Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Tech. 5: Loop Fusion

local/continuous memory access >>>> global/random access
mutually-independent instructions >>> dependent instructions

for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {

f(...);
}

}
for (j = 0; j < height; j++) {

for (i = 0; i < width; i++) {
g(...);

}
}

for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {

f(...);
g(...);

}
}

• smaller loop overheads
• improved memory

locality
• more independent

instructions within a loop

20Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Tech. 6: Loop Unrolling

mutually-independent instructions >>> dependent instructions

for (i = 0; i < N; i++) {
f(i, ...) = ...

}

for (i = 0; i < N; i += 4) {
f(i, ...) = ...
f(i+1, ...) = ...
f(i+2, ...) = ...
f(i+3, ...) = ...

}

• smaller loop overheads
• more independent

instructions within a loop

21Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Results (total)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

OpenCV
naive

pixel access by ptr

loop fused

loop fused except memcpy

loop unrolled

tim
e

[m
s]

22Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

OpenCV
naive

pixel access by ptr

loop fused

loop fused except memcpy

loop unrolled

tim
e

[m
s]

23Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Outline

• Local Optimization of Coding

• Pixel Access Methods

• Loop Optimization

• Parallel Processing

24Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Tech. 7: Multi-Threading

#pragma omp parallel for num_threads(4)
for (j = 0; j < height; j++) {

for (i = 0; i < width; i++) {
image.at<uchar>(j, i) = ...

}
}

• Image processing in general has high data parallelism, and
thus parallel processing is effective

• One of the easiest way is to parallelize for loops into
multiple threads using OpenMP

• Threads will be executed in multiple cores
• Visual C++ supports OpenMP by default

•Config. properties – C/C++ – Language – OpenMP

25Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Tech. 8: SIMD Extensions
• SIMD: Single Instruction stream, Multiple Data stream

cf. MIMD
• Many recent processors have extended instruction set to

perform SIMD operations
• MMX, SSE, AVX (intel)

• In SSE, eight 128-bit registers (xmm0, ... xmm7) are used
• sixteen 8-bit data, eight 16-bit data, four 32-bit data, or two 64-bit

data are processed at a time

xmm0

xmm1

+ + + +

128 bit

32-bit float
or

32-bit integer

26Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

float sum = 0.0f;
for (i = 0; i < N; i++) {

sum += w[i] * x[i];
}

__m128 sum = _mm_setzero_ps();
for (i = 0; i < N; i += 4) {

__m128 ws = _mm_loadu_ps(&w[i]);
__m128 xs = _mm_loadu_ps(&x[i]);
sum = _mm_add_ps(sum, _mm_mul_ps(ws, xs));

}
...

Compiler intrinsics: easiest way to explicitly use SSE
•common for Visual C++ and GCC

27Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Results (each part)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

bgr2gray OpenCV

bgr2gray calc

bgr2gray pixel access by ptr

bgr2gray OpenMP

bgr2gray SSE

bgr2gray OpenMP/SSE

highlight diff OpenCV

highlight diff if-else

highlight diff pixel access by ptr

highlight diff OpenMP

highlight diff SSE

highlight diff OpenMP/SSE

tim
e

[m
s]

Note the large deviation when OpenMP is enabled

28Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Results (total)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

OpenCV
naive

pixel access by ptr

loop fused except memcpy

loop unrolled

OpenMP
SSE OpenMP/SSE

tim
e

[m
s]

29Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

OpenCV
naive

pixel access by ptr

loop fused except memcpy

loop unrolled

OpenMP
SSE OpenMP/SSE

tim
e

[m
s]

30Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

Summary

• Pixel Scan Order
• Pixels should be accessed in the order in which they are

stored (row major in OpenCV)
• Pixel Access Methods

•at() is slow! Using ptr() instead significantly improves
the performance

• Other Optimizations
• strength reduction, table lookup, loop fusion, loop unrolling

• Parallel Processing
• OpenMP, SIMD extension, (GPU was not mentioned today)

• Some work fine; Some do not (Some may work even worse)
• Trial & error are needed
• Trade-off between performance and maintainability
• Too early optimization should be avoided

31Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2014.07.22

References

• D. Bulka and D. Mayhew: Efficient C++: Performance Programming
Techniques, Addison-Wesley, 1999.

• http://code.google.com/p/stattimer/ (as of 2014/7/22)

(in Japanese)
• 片山: Cプログラム高速化研究班, USP研究所, 2012.

Sample codes are in sample20140722.zip available at
http://www.ic.is.tohoku.ac.jp/~swk/lecture/

http://code.google.com/p/stattimer/

	Intelligent Control Systems��Speeding-up Techniques of Image Processing
	Fast Image Processing
	Algorithm Choice Example: Gaussian Filter
	Besides Algorithm Choices
	Highlighting Frame Difference: Algorithm
	How to Measure Elapsed Time
	Outline
	Common Sense: What are slow?
	Tech. 1: Table Lookup
	Tech. 2: Strength Reduction
	Tech. 3: Bulk Memory Copy
	Results (each part)
	Note: Row or Column Major Access
	Results (each part)
	Outline
	Tech. 4: Pixel Access Methods
	Results (each part)
	Outline
	Tech. 5: Loop Fusion
	Tech. 6: Loop Unrolling
	Results (total)
	スライド番号 22
	Outline
	Tech. 7: Multi-Threading
	Tech. 8: SIMD Extensions
	スライド番号 26
	Results (each part)
	Results (total)
	スライド番号 29
	Summary
	References
	Assignment

