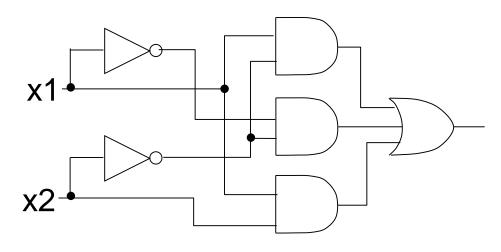
東北大学 工学部 機械知能・航空工学科 2017年度 5セメスター・クラスC3 D1 D2 D3

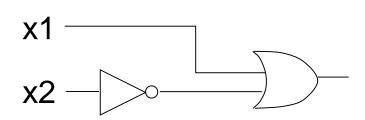
計算機工学


9. 論理式の簡単化 (教科書3.1~3.3節)

大学院情報科学研究科 鏡 慎吾

http://www.ic.is.tohoku.ac.jp/~swk/lecture/

論理式(論理回路)の簡単化


$$f(x_1, x_2) = x_1 \overline{x_2} + \overline{x_1} \overline{x_2} + x_1 x_2$$

$$= x_1 \overline{x_2} + \overline{x_1} \overline{x_2} + x_1 \overline{x_2} + x_1 x_2$$

$$=(x_1+\overline{x_1})\overline{x_2}+x_1(\overline{x_2}+x_2)$$
 このような組をどうやって見つけるか?

$$= \overline{x_2} + x_1$$

カルノ一図 (2入力の場合)

$$f(x_1, x_2) = x_1 \overline{x_2} + \overline{x_1} \overline{x_2} + x_1 x_2$$
 (主加法標準形)

→ 真理値表を 2 次元に並べ替える

		X	2
		0	1
x1	0	1	0
	1	1	1

1になる3つのセルの和を書き下すと主加法標準形になる

- 1つ1つのマス目(セル)が最小項を表す
- ・論理関数に含まれる最小項のセルには1を、含まれないセルには0を書き込む(あるいは空白のままとする)

カルノ一図の特徴

		X	2
		0	1
x1	0	0	
	1	0	0

		x2		
		0	1	
x1	0	0	1	$\overline{x_1}x_2 + x_1x_2$
	1	0	1	$= (\overline{x_1} + x_1)x_2$
				$=x_2$

$$\overline{x_1} \, \overline{x_2} + x_1 \, \overline{x_2} + \overline{x_1} x_2 + x_1 x_2$$

$$= (\overline{x_1} + x_1) \, \overline{x_2} + (\overline{x_1} + x_1) x_2$$

$$= \overline{x_2} + x_2$$

隣接する 2ⁿ 個のセルをまとめることが変数の削除に対応する

カルノ一図による簡単化

		X	2
		0	1
x1	0	1	0
	1	1	1

$$\overline{x_1} \, \overline{x_2} + x_1 \, \overline{x_2} + x_1 x_2$$

$$= \overline{x_2} + x_1$$

セルを1個ずつ取り上げて和を取る 代わりに、隣接する1をまとめた積 項を取り上げてその和を取っても同 じ関数を表現できる

- 2^m 個のセルからなる長方形をルー プと呼ぶ
 - →基本積に対応
- できるだけ少なく大きなループにより、すべての1を覆う
 - 少ないループ → 少ない項
 - 大きなループ → 少ないリテラル
- ダブって覆ってもよい

例: 3入力の場合

3入力多数決関数

$$f(x_1, x_2, x_3) = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2\overline{x_3} + x_1x_2x_3$$
$$= x_2x_3 + x_1x_2 + x_1x_3$$

		x1 x2			
		00	01	11	10
х3	0	0	0	1	0
	1	0	1	1	1

この並び方がミソ

いずれの基本積もうまく長方形で表せるようになっている

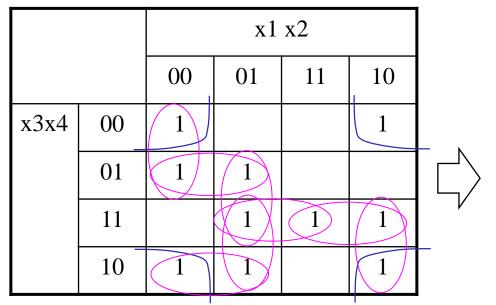
例

			x1 x2				
		00	01	11	10		
х3	0	1	0	0	1		
	1	1	0	1	1		

$$\overline{x_1}\,\overline{x_2} + x_1x_3 + x_1\,\overline{x_2} \quad (?)$$

x1 x2 00 01 11 10 x3 0 1 0 0 1 1 1 0 1 1

上下左右も隣接している!


$$= \overline{x_2} + x_1 x_3$$

簡単化の手順の(一応の)まとめ

- 1. 1を覆うループのうち,他のループに包含されないもの(主項ループ)のみを列挙する
 - 隣接するループを結合できないか?と考えるとよい
- 2. ひとつの主項ループでしか覆われていない1がある場合, そのループ(必須主項ループ)は必ず残す
- 3. 必須主項ループで覆われていない1がある場合, できるだけ少ない主項ループで覆う
 - このとき複数の選び方がある場合は、できるだけ大きなループの組合せを選ぶ

(結局, 完全に自動化できる手順ではない)

例

			x1 x2			
		00	01	11	10	
x3x4	00	1			1	
	01 (1	1			
	11		1	1	1	
	10	1	1		1	

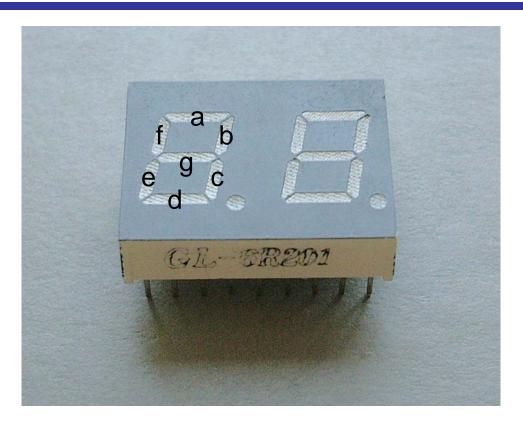
主項ループ (青線が必須主項)

 $\overline{x_2} \, \overline{x_4} + \overline{x_1} \, \overline{x_3} x_4 + \overline{x_1} x_2 x_3 + x_1 x_3 x_4$

- •入力変数が増えるとだんだん難しくなってくる
- •上下左右の隣接に注意(特に四隅が気づきにくい)
- ●一般に、答えは一通りとは限らない(see 教科書例題3.2)

ドントケア項のある場合

最小項のうち一部に「1になっても0になってもよい」ものがある場合(その項に対応する入力を考える必要がない場合)


冗長項 (don't care term), 組合せ禁止項などと呼び, × や * などで表す

		x1 x2				
		00	01	11	10	
х3	0	*	0	1	0	
	1	*	*	1	1	

ループはできるだけ少なく, 大きくしたいので,

- 既存のループを大きくできるなら積極的に使う
- 新たにループを作らないといけないなら無視する

例: 7セグメントLED

http://ja.wikipedia.org/wiki/%E7%94%BB%E5%83%8F:7segdisplay.jpg

2進数入力 (binary coded decimal, BCD) d3 d2 d1 d0 LED点灯回路 (例: 74HC4511) b a

出力 e を d₃, d₂, d₁, d₀ の論理式で表し, 簡単化せよ

出力eを簡単化する例

d3	d2	d1	d0	e
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	*
1	0	1	1	*
1	1	0	0	*
1	1	0	1	* 🖊
1	1	1	0	*
1	1	1	1	*

		d1d0			
		00	01	11	10
d3d2	00	1			1
	01				1
	11	*	*	*	*
	10	1		*	*

don't

$$e = \overline{d_2} \, \overline{d_0} + d_1 \, \overline{d_0}$$

参考: 実際の論理式簡単化

- カルノ一図による方法は、5入力以上になるとあまりうれしくない(頑張っても6入力程度). 自動化に向いていない
 - → より自動化に適した方法:

e.g.: クワイン・マクラスキー法

ではそれで十分か?

- 複雑になると難しい(記憶容量,計算時間が大きすぎる)
- 多数の出力がある場合、さらに簡単な組み合わせがあり得る
- 積和形よりより回路があるかも知れない
 - → 組合せ最適化問題の典型であり、厳密に解くのは難しい、 ヒューリスティック(発見的)な解法が用いられる

参考: 用語の意味をカルノ一図で考える

最小項: x1 x2 x3 x4

		x1 x2			
		00	01	11	10
x3x4	00				
	01				
	11				
	10				

最大項: x1+x2+x3+x4

			x1 x2			
		00	01	11	10	
x3x4	00	0				
	01					
	11				\rightarrow	
	10					

参考: 用語の意味をカルノ一図で考える

主加法標準形

			x1 x2				
		00	01	11	10		
x3 x4	00						
x4	01						
	11			1			
	10						

			x1 x2				
			01	11	10		
x3 x4	00						
x4	01		1				
	11						
	10						

			x1	x2	
		00	01	11	10
x3 x4	00				
x4	01				
	11				
	10		1		

+ ...

主乗法標準形

			x1 x2				
		00	01	11	10		
x3 x4	00						
	01						
	11			0			
	10						

I				x1	x2	
ı			00	01	11	10
I	x3 x4	00				
ı	x4	01		0		
ı		11				
l		10				

			x1	x2	
		00	01	11	10
x3 x4	00				
x4	01				
	11				
	10		0		

• • •

練習問題

 $f(x, y, z, w) = xyzw + xyz\overline{w} + x\overline{y}z\overline{w} + \overline{x}yz\overline{w} + \overline{x}\overline{y}z\overline{w} + x\overline{y}\overline{z}\overline{w} + \overline{x}\overline{y}\overline{z}\overline{w}$

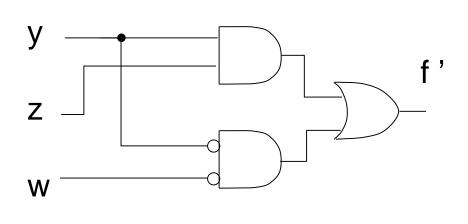
- (1) カルノ一図で表せ
- (2) できるだけ簡単な積和型の論理式で表せ
- (3) (2) で求めた論理式を表す論理回路図を示せ. AND, OR, NOT の各ゲートを使用してよい
- (4) 関数 f に冗長項 (x,y,w) = (0,1,1) を加えた不完全記述 論理関数を f'とする. f'をできるだけ簡単な積和型の論 理式で表し, 論理回路図を示せ.

解答例

$$f(x, y, z, w)$$

$$= xyzw + xyz\overline{w} + x\overline{y}z\overline{w} + \overline{x}yz\overline{w} + \overline{x}\overline{y}z\overline{w} + x\overline{y}\overline{z}\overline{w} + \overline{x}\overline{y}\overline{z}\overline{w}$$

			ху				
		00	01	11	10		
z w	00	1			1		
	01						
	11			1			
	10	1	1	1			


$$= \overline{y}\overline{w} + z\overline{w} + xyz$$

解答例(つづき)

$$f'(x, y, z, w) = \overline{y}\overline{w} + yz$$

			x y				
		00	01	11	10		
z w	00	1			1		
	01		*				
	11		*	1			
	10	1	1	1	1		

例題(おまけ)

A君はあまり真面目に大学に来ない学生であるが、全く来ないわけでもない. よく観察してみると以下の法則性があることがわかった:

- 朝まで飲んでいたわけではなくて、晴れていて、落とせない講義がある日は登校する
- 落とせない講義がなくても、朝まで飲んでいたわけではなくて、晴れている日は登校する
- 朝まで飲んでいた日でも、落とせない講義がある日は天気に関わらず登 校する
- 天気が悪くても、落とせない講義がある日で、朝まで飲んでたわけじゃない場合は登校する
- 上記で挙がった場合以外は休む
- (1) x_1 : 朝まで飲んでいた, x_2 落とせない講義がある, x_3 : 晴天であるとして「A君登校関数」を論理式で表せ.
- (2)「A君登校関数」のカルノ一図をかき、簡単化せよ.

例題(おまけ) 解答例

朝まで飲んでいたわけではなくて、晴れていて、落と せない講義がある日は登校する

落とせない講義がなくても、朝まで飲んでいたわけではなくて、晴れている日は登校する

• 朝まで飲んでいた日でも、落とせない講義がある日は 天気に関わらず登校する

天気が悪くても、落とせない講義がある日で、朝まで 飲んでたわけじゃない場合は登校する (飲) (講) (晴)

 $\overline{\mathbf{x}}_1 \mathbf{x}_2 \mathbf{x}_3$

 $+\overline{X}_1\overline{X}_2X_3$

+ X₁ X₂

 $+\overline{X}_1 X_2 \overline{X}_3$

			x2 x3					
		00	01	11	10			
x 1	0		1	1	1			
	1			1	1/			

カルノ一図から, 簡単化すると

$$x_2 + x_1 x_3$$

(つまりA君は、落とせない講義がある日、または、朝まで飲んで無くてかつ晴れている日は登校する)