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Abstract— This paper proposes a method for identifying an
object which contains an accelerometer out of many moving
objects in the view of a stationary camera using motion data
obtained by the camera and the accelerometer. The camera and
the accelerometer are assumed to be connected with a network
but not synchronized. In order to evaluate the similarity
of the motion data despite the unknown time lag between
the accelerometer and the camera, NCC (Normalized Cross-
Correlation) of the signals is computed and its peak is tracked.
Since the coordinate system of the accelerometer is unknown,
NCC is computed for the norms of the acceleration vectors,
which were compensated for the gravitational acceleration
component, obtained by the camera and the accelerometer.
The experimental results show that the proposed method
successfully identified the person wearing the accelerometer out
of three walking people. It is also shown that the hand holding
the accelerometer was successfully identified out of three
moving hands even though the directions of the accelerometer
coordinate axes varied temporally due to the free motion of the
hand.

I. I

It is important to estimate the position of a portable infor-

mation device such as a PDA (Personal Digital Assistant) or

a cell-phone in realizing ubiquitous computing [1]. Therefore

many methods have been proposed for position estimation as

briefly summarized in Section II.

Cameras have been widely used to localize and track

objects [2], but identifying an object out of the ones with

similar appearance is difficult and some other clues must be

combined. A popular measure is to attach to the object a

visually detectable identification tag such as 1D or 2D bar-

codes or temporally coded light sources [3]. These methods

are practical, but they cannot be applied in situations where

the target object is hidden, for example, in a pocket or a

hand because the camera has to capture the image of the tag

itself.

In the meantime, accelerometers have been improved with

the advancement of the MEMS technology and they have

been rapidly becoming smaller, more lightweight and more

inexpensive. Following this trend, many devices such as cell-

phones, controllers of game consoles and PDAs equipped

with accelerometers have been brought to the market, and

applications utilizing them have been proposed [4].

Considering the recent advancement of the sensor net-

work technology, it is expected that information from these

accelerometers in portable devices will be communicated
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Fig. 1. Application example: Finding a person who has an accelerometer
based on motion information gathered by a camera and the accelerometer.

through a network and combined with visual information

from the cameras, which are installed, for example, in public

spaces.

Taking account of these backgrounds, this paper proposes

a method to identify an object containing an accelerometer

out of many moving objects in a camera view by computing

time correlation of motion data obtained by the accelerometer

and the camera. Fig. 1 shows an application example. It is

assumed that there are many walking people in the camera

view, and one of them has a device with an accelerometer in

his/her bag. Even if the camera cannot capture the image

of the device itself, it is possible to identify the person

by combining the signals from the accelerometer and the

camera. The identification results will be used, for example,

to offer location-aware services for the person and the device.

II. R 

Other than using cameras, there are many methods for po-

sition estimation that could be applied to localizing portable

devices.

The most popular and widely used ones are the methods

based on GPS (Global Positioning System) [5]. However, it

is difficult to estimate location accurately in indoor environ-

ments.

Positioning techniques based on the radio frequency tech-

nology, using such as RSSI (Received Signal Strength Indica-

tion) [6] or TDoA (Time Difference of Arrival) [7], are also

actively developed. For indoor use, an interesting method

utilizing the power line infrastructure has also been proposed

[8]. Although it is reported that their detection accuracy is on

the order of sub-meter, it is not accurate enough, for example,

to detect gesture motions.

Some positioning systems introducing more specialized

equipments can achieve higher degrees of accuracy. Sub-
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millimeter accuracy is achieved using a system based on

the magnetic field [9]. Some systems based on ultrasonic

sensors [10][11] achieve sub-centimeter accuracy. However,

it is still unclear whether these specialized equipments will

be employed in many portable devices. In addition, magnetic-

based methods are susceptible to magnetic interference from

the presence of metals or other conductive materials [11].

A related work similar to ours has been reported [12]

in which a person is identified out of many people in a

camera view by evaluating the correlation of signals from

the camera on the ceiling and motion sensors, namely an

accelerometer, a gyro and a magnetic sensor, worn by the

person. Although it is not clearly described in the paper how

the motion sensor data are processed, the method presumably

requires some knowledge about the relationship between the

coordinate systems of the camera and the motion sensors,

which is the biggest difference from the method proposed in

this paper.

III. P 

Fig. 2 shows the procedure of the proposed method. It

assumes that there is a moving object containing a 3-axis

accelerometer among many moving objects in the view of a

stationary camera. Moving areas are detected and segmented

from the image, although we do not focus on how. The

centroids of the moving areas in the image coordinate are

denoted by (Xi,Yi), and the acceleration vectors of them

are denoted by (Ẍi, Ÿi), where i denotes the object index,

which is omitted unless it causes ambiguity. The acceleration

vector of the 3-axis accelerometer is denoted by (ax,ay,az)

where the coordinate axes are fixed to the accelerometer.

Here, we apply a low-pass filter to (Xi,Yi), (Ẍi, Ÿi) and

(ax,ay,az), respectively to get rid of undesired high frequency

components.

It is assumed that the accelerometer and the camera

have their own internal clocks, so that timestamps can be

recorded, which are not synchronized. In order to evaluate

the similarity of the motion data, NCC (Normalized Cross-

Correlation) of the signals from the accelerometer and the

camera is computed.

The problems we have to consider here are two-fold. The

first is that the coordinate system of the accelerometer is

unknown, and is varying temporally. To solve this problem,

we compute NCC for the norms of acceleration vectors,

which do not depend on the coordinate system. The sec-

ond is that the accelerometer reports an acceleration vector

including the component of gravitational acceleration, but

the gravity direction is unknown. To solve this problem, a

roughly estimated gravitational acceleration component is

added to the acceleration vector obtained by the camera

before calculating its norm.

Fig. 3 shows the time charts of the involved signals.

The unknown time lag of the camera signals from the

accelerometer signals is denoted by τ, where −N2 < τ < N1.

N1 and N2 specify the range of the time shift for which NCC

is computed. Let Nws and Nwl (= N1 +N2 +Nws) denote the

window sizes for NCC. The time t1, t2 and t3 are defined

capture a image

compute centroid position

apply low-pass filter

compensate for gravitational acceleration

apply low-pass filter

compute acceleration

compute norm

camera

procedure

accelerometer

procedure

get acceleration

apply low-pass filter

compute norm

compute NCC

apply sequential Bayesian estimation

Fig. 2. Procedure of the proposed method.
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Fig. 3. Time charts of the signals.

as t1 = t−Nwl, t2 = t−N2−Nws, and t3 = t−N2, respectively,

where t is the present time. For k ∈ {0,1, · · · ,Nws−1} and l ∈

{0,1, · · · ,Nwl−1}, the acceleration norms of the accelerometer

and the camera are denoted by aacc(k) and acam(l), which are

computed as:

aacc(k)
def
=

√

ax
2(t2+ k)+ay2(t2+ k)+az

2(t2+ k), (1)

acam(l)
def
=

√

(Ẍi(t1+ l))2+ (Ÿi(t1+ l)+gcam)2, (2)

where the gravitational acceleration in the image coordinate

is denoted by gcam [pixel/sample2], and it is assumed that

the positive direction of the Y-axis in the image coordinate

approximately corresponds to the direction of gravity. Since

it is difficult to estimate gcam precisely, we use an approxi-

mate value considering that the moving object is around the

optical axis:

gcam ≃ −
g f

dlpixH2
, (3)

where f [m] is the focal length of the camera lens, lpix

[m/pixel] is the pixel size of the image sensor, H [samples/s]
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is the sampling frequency of the camera, g [m/s2] is the

gravitational acceleration, and d [m] is an approximate

distance between the camera and the object.

NCC between aacc(k) and acam(l) is defined as:

rt(m)
def
=

Nws−1
∑

n=0

ft(n)ht(n+m)

√

√

√Nws−1
∑

n=0

f 2
t (n)

√

√

√Nws−1
∑

n=0

h2
t (n+m)

, (4)

where ft and ht are defined as:

ft(k)
def
= aacc(k)− āacc, (5)

ht(l)
def
= acam(l)− ācam, (6)

where āacc is the average value of aacc(k) over k= 0, · · · ,Nws−

1, and ācam is the average value of acam(l) over l= 0, · · · ,Nwl−

1. The symbol m ∈ {0,1, · · · ,N1+N2} denotes the time shift.

At each present time t, we find the time shift m where the

maximum NCC value is obtained, which is denoted by m̂.

This m̂ is expected to correspond to the time lag between

the signals from the accelerometer and the camera. The

maximum value of NCC is expected to express the similarity

between the signals.

Practically, due to various disturbances or coincidental

motions, the NCC peak will not always appear at the ground-

truth point, or NCC of the signals corresponding to a false

object might happen to exhibit a peak instantly. In order

to track a consistently appearing peak, sequential Bayesian

estimation is applied.

Let the time lag at the time t be denoted by mt, all the

measurement data at the time t, including the ones from the

accelerometer and the camera, be denoted by zt, and let Zt

denote {z1,z2, · · · ,zt}. The conditional probability p(mt |Zt) is

computed from p(mt−1|Zt−1) recursively as:

p(mt |Zt) ∝ p(zt |mt)p(mt |Zt−1), (7)

p(mt |Zt−1)
def
∝ p(mt−1|Zt−1)+ c, (8)

p(zt |mt)
def
∝ rt(mt)+1. (9)

Equation (8) represents the assumed dynamics of the time

lag mt, where mt is assumed to be unchanged, while a small

offset c is added in order to prevent a posterior probability

from becoming zero. The likelihood function defined in (9)

where rt(mt) is biased so that it has a positive value. This

equation means that the larger the correlation at some time

lag is, the larger p(zt |mt) is. This likelihood function is not

physically grounded, but this kind of ad-hoc definition of a

likelihood function based on NCC is sometimes employed

[13]. We use a uniform distribution as the initial density

p(m0) because we have no information about the time lag at

first.

IV. E S

We carried out experiments under the environment shown

in Fig. 4. A Point Grey Research Dragonfly Express camera

camera

axis of camera

X

Y

z

x y

USB

PC

IEEE1394b

1.8 m

axis of accelerometer

accelerometer

Fig. 4. Experimental setup.

Fig. 5. Snapshots of tracked targets. The left image shows a walking
person and the right one shows a moving hand. The red ellipses indicate
the tracked target regions, and image processing was done within the green
rectangles around the targets.

TABLE I

S      .

Focal length of the lens f , 4.1 [mm].
Camera resolution, 640 × 480 [pixels].
Pixel size lpix, 7.4 [µm].
Format, color 8 [bit].
Accelerometer resolution, 8 [bit].
Accelerometer measurement range, −2.0 ∼ 2.0 [g].

captured images of a moving object. The camera was con-

nected to a PC through IEEE1394b. To get acceleration data

of the moving object, we used a Freescale Semiconductor

MMA7260Q accelerometer, which was connected to PC

through USB. Table I summarizes the specification of the

accelerometer and the camera.

To use the proposed method, we first have to extract

moving regions from the images. In this experiment, we used

the CAMSHIFT algorithm [14] to track a hand and a jacket

motion. Fig. 5 shows some snapshots of the tracked targets in

the camera view. The red ellipses indicate the tracked target

regions. To reduce the computation time, the tracking image

processing was done only within the green rectangles around

the targets. As the approximate distance between the camera

and the object, which is required in computing acam, we used

the value d = 3 [m].

Table II shows the parameters we set in the experiment.

These parameters were determined empirically. The average

ground-truth time lag between the time stamps on the signals

from the camera and the accelerometer, which were recorded

immediately after the PC obtained the data, was 15 [ms] and

the standard deviation was 0.12 [ms].
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TABLE II

P    .

Sampling frequency H, 63 [Hz].
Number of sampled data, 1000 [samples].
Window size Nws, 300 [samples].
Time shift range N1, 50 [samples].
Time shift range N2, 50 [samples].
Offset in (8) c, 0.00001.

We carried out the experiments for the following two type

of moving objects:

• a walking person with the accelerometer in his/her

trouser pocket,

• a moving hand holding the accelerometer.

For the first type, the jacket of the person was tracked in

the camera view as shown in the left image in Fig. 5. The

person had the accelerometer in his/her trouser pocket and

walked freely in the camera view.

For the second type, the hand with the accelerometer,

which was moved freely, was tracked as shown in the right

image in Fig. 5. We prevented the hand from moving near

flesh-color objects such as other hands or faces because the

CAMSHIFT tracking fails.

In order to evaluate the effectiveness of the proposed

method, we must compare the results for the true object (with

the accelerometer) and false objects (without the accelerome-

ter). Instead of moving several objects simultaneously within

the camera view, we moved only one object in the view and

used the data (Ẍ1, Ÿ1) and (ax,ay,az) obtained in a trial of

the experiment as true object data, and (Ẍ2, Ÿ2) and (Ẍ3, Ÿ3)

obtained in two other trials as false object data. These

acceleration vectors from the camera are referred to as data

1, 2 and 3, respectively. The situation of identifying a moving

object out of three objects was simulated by evaluating the

correlation between (ax,ay,az) and these data 1, 2 and 3 off-

line.

V. E 

A. Walking Person

We evaluated the proposed method for various ways of

walking. A set of results corresponding to one of them is

described here in detail, where the person was walking at

the distance of from 1 to 4 [m] from the camera.

Fig. 6 shows NCC for data 1, 2 and 3 calculated as (4). Fig.

7 shows the maximum values of these NCC, and the time

shift values where the maximum NCC were detected. It can

be observed that NCC for data 1 was periodical because the

period of walking was constant. The results of the sequential

Bayesian estimation are shown in Fig. 8. Here, at time t, the

time shift value where the maximum p(mt |Zt) was detected

is referred to by the estimated time shift. Table III shows the

average values and standard deviations of the estimated time

shift at time t = 400 ∼ 1000.

Considering that the standard deviation for the data 1 is

smaller than the other two, the data 1 can be believed to

exhibit a consistent peak at the time shift m = 60 and it can

be concluded that this object was successfully identified as
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Fig. 6. NCC for the case of a walking person. (A) shows NCC for data 1,
which corresponds to the true object which contains an accelerometer. (B)
and (C) show NCC for data 2 and 3, respectively.

the one containing the accelerometer. For the other two data,

consistent peaks could not be observed.

The other results that were not presented here, including

the case of walking sideways or backward, showed that the

objects were successfully identified.

B. Moving Hand

We also evaluated the proposed method for various ways

of hand moving. A set of results corresponding to one of
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Fig. 7. NCC peaks for the case of a walking person. The upper shows the
maximum values of NCC. The lower shows the time shift values where the
maximum NCC were detected.
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Fig. 8. The results of sequential Bayesian estimation for the case of a
walking person.

TABLE III

E      B    

   .

data average value standard deviation
[samples] [samples]

1 60 0.47
2 60 20
3 26 25

them is described here in detail, where the directions of the

coordinate axes of the accelerometer were varied rapidly due

to the rapid motion of the hand.

Fig. 9 shows NCC for data 1, 2 and 3. Fig. 10 shows the

maximum values of these NCC, and the time shift values of

the maximum NCC. The results of the sequential Bayesian

estimation are shown in Fig. 11. Table III shows the average

values and standard deviations of the estimated time shift at

time t = 400 ∼ 1000.

Considering that the standard deviation for the data 1 is

the smallest, the data 1 can be believed to exhibit a consistent

peak at the time shift m = 58 and it can be concluded that

this hand was successfully identified as the one holding the

accelerometer.
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Fig. 9. NCC for the case of a moving hand. (A) shows NCC for data 1,
which corresponds to the true object which contains an accelerometer. (B)
and (C) show NCC for data 2 and 3, respectively.

TABLE IV

E      B    

   .

data mean value standard deviation
[samples] [samples]

1 58 0.33
2 33 28
3 56 31
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Fig. 10. NCC peaks for the case of a moving hand. The upper shows the
maximum values of NCC. The lower shows the time shift values where the
maximum NCC were detected.
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Fig. 11. The results of sequential Bayesian estimation for the case of a
moving hand.

VI. D

In the experiment of the walking persons, it should be

noted that the person actually walked at the distance of

from 1 to 4 [m] while the parameter used to compute the

gravitational acceleration was fixed at d = 3. This shows that

the accurate distance from the camera to the object is not

required for identifying an object.

In the experiment of the moving hands, it should also be

noticed that the NCC peak exhibited values higher than 0.8

in Fig. 10 even though the directions of the accelerometer

coordinate axes rapidly varied. This shows that our method

is insusceptible to the change of the coordinate system of

the accelerometer.

Although our experimental evaluation was successful on

the whole, it is clear that there are many particular cases in

which our method will not work. For example,

• the object moves only along the optical axis,

• no acceleration is obtained by the camera, for example,

due to a constant velocity motion,

• closely similar motions are detected by the camera.

These particular motions, however, will not last permanently

in normal situations and it is expected that a long time obser-

vation will deliver sufficient information for identification.

VII. C

This paper has presented a method for identifying an

object containing an accelerometer out of many moving

objects in a camera view by computing NCC of the norms of

acceleration vectors obtained by the accelerometer and the

camera. The experimental results show this method could

identify the person with the accelerometer out of three

walking people. It is also shown that the moving hand

holding the accelerometer was identified out of three hands

even though the directions of the accelerometer coordinate

axes rapidly varied.

Future work will include establishing a clear criterion for

identification. Our method regards the one which has the

smallest standard deviation of the estimated time shift as the

object with the accelerometer. However, this method fails

when the object with the sensor is out of the camera view.

In such a case, another object which is not related to the true

one will be regarded as the one with the sensor. We must

establish a reliable criterion, for example, based on statistical

methods.

VIII. A
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