

A FULL-COLOR SINGLE-CHIP-DLP PROJECTOR WITH AN EMBEDDED 2400-FPS HOMOGRAPHY WARPING ENGINE

Shingo Kagami, Koichi Hashimoto

Tohoku University

© 2018 SIGGRAPH. All Rights Reserved

Photography & Recording Encouraged

MOTIVATION

Make every surface around you a display

- augmented-reality user interfaces
- media art installations
- stabilized projection by handheld projectors

Key Challenge:

- How to achieve low latency

GENERATIONS /

SIGGRAPH2018

SEE OUR E-TECH BOOTH

Koichi Hashimoto Tohoku University

OUTLINE

- Motivation
- Low-Latency Vision and Projection
- Our Approach for Low-Latency Projection
- Hardware Implementation
- Color Representation
- Results

LOW-LATENCY VISION AND PROJECTION

- High-speed real-time-streaming cameras have already become commodity
- Lightweight fast visual processing algorithms are readily available

• Then, what about projection?

DLP PROJECTORS

Digital Micromirror Devices (DMD)

- switches at up to tens of thousands of fps
- binary pattern is displayed at a time instant

http://www.dlp.com/jp/technology/how-dlp-works/

GRAY-LEVEL IMAGES COMPOSED OF BINARY PATTERNS

time

Original Video Sequence

video frame time

Standard DLP Representation (decomposed into bit planes)

A number of binary patterns are time-integrated by human vision

HOW TO ACHIEVE HIGH FRAME RATE

- Combine with intensity modulation of light sources
- 8-bit monochrome image represented by (at least)
 8 binary frames
- 3 times more for RGB color images

POSSIBLE APPROACHES FOR LOW-LATENCY MOTION-ADAPTIVE PROJECTION

GENERATIONS / VANCOUVER SIGGRAPH2018

- "normal" projectors can be used
 X limited motion DoF
 [Okumura+, ICME 2012]
- high versatility
- X high data generation/transfer cost [Watanabe+, IDW 2015]

Our Approach [Kagami+, SIGGRAPH Asia 2015 E-tech]

proposed approach (adapt to motion at the binary pattern rate)

WHAT HAPPENS IN THE OBSERVER'S EYES?

Direction of integration in time-space becomes changed

RELATED WORK (FOUND IN HMD LITERATURE)

Low-latency DMD-based HMD:

- Maintain "ideal" target gray-level image at high rate
- Residual error image toward the "ideal" one is binarized and presented [Zheng+, ISMAR2014]
- Or, "ideal" image is binarized with random threshold [Lincoln+, TVCG 2016]

Microsoft Hololens:

- RGB color fields are sequentially post-warped by newest motion sensor readings [Klein, ISMAR2017 plenary]
- Decomposition into binary patterns does not take place (since LCoS is used)

HARDWARE IMPLEMENTATION

GENERATIONS / VANCOUVER SIGGRAPH2018

Our previous prototype [Kagami+, 2015]

Based on Texas Instruments DLP Discovery 4100 Non-modulated white LED

Custom controller board Intensity-modulated RGB LED

HARDWARE IMPLEMENTATION

Homography warping parameters (any perspective mapping from plane to plane)

2740 transforms/s for 1024x768 binary image

DISCUSSION ON COLOR REPRESENTATION

GENERATIONS / VANCOUVER SIGGRAPH2018

3-bit RGB with 21 binary patterns

8-bit RGB with 24 binary patterns

longer sequence needed for more bit depths

• lower utilization of light

DESIGN TRADEOFFS

• binary pattern period:

- should be short for more color depths with better light utilization
- should be long for cheaper DMD employed or for small data bandwidth

• video frame period:

- should be long for more color depths with better light utilization
- should be short for quick motion adaptability, if video frame period equals to the unit time for motion adaptation

OUR REPRESENTATION FOR 8-BIT RGB

GENERATIONS / VANCOUVER SIGGRAPH2018

* This diagram ignores bit splitting and color interleaving

- With our approach, video frame period and unit time for motion adaptation are independent
- But the frame period should be short enough to avoid flicker perception

PROJECTION RESULTS

How 24-bpp color image is represented

recognized as an external monitor by Windows PC

PROOF-OF-CONCEPT DEMO: TRACKING PROJECTION ONTO A MOVING SURFACE

Basler acA640-750 USB-3 camera (run at around 400 fps)

See [Kagami+, SIGGRAPH Asia 2015] for the detailed algorithm

PROOF-OF-CONCEPT DEMO: WARPED PROJECTION BY HAND GESTURE

Leap Motion sensor (run at around 200 fps)

SUMMARY

A full-color projector with low-latency motion adaptability

- per-bitplane warping approach
- color representation in single-chip-DLP configuration

Limitations

- Warping functions are hard-wired
- Brighter LEDs should be used for real applications

Future work

- Extending warping functions (e.g. for multiple polygons)
- User tests for image quality and latency perception

GENERATIONS

SIGGRAPH2018

Complete the Survey by

- Navigating to this session in the app,
- Scrolling to the bottom of the screen, and
 - Answering less than 5 questions

