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Abstract— A sensor selection method for distributed real-time
sensing is proposed where the effect of communication delays is
taken into account. First, a multi-sensor fusion algorithm that
allows communication delays is proposed. This method takes
advantage of the information form of Kalman filtering in order
to maintain scalability with the number of sensors. Based on
this algorithm, an algorithm is developed that calculates mutual
information between an observation and the state to be estimated,
which provides a criterion for sensor selection. Simulated results
of a target-tracking task show its effectiveness.

I. INTRODUCTION

Rapid advances of networking technologies, such as wire-
less communication and mobile ad hoc networking, and de-
vice integration technologies, such as VLSI and MEMS, are
enabling vast numbers of small sensors to be spread over the
real world and networked with each other [1].

In particular, efforts aiming at open and flexible sensor
networks that can adapt to dynamically changing environments
and objectives are increasingly gaining attention, rather than
closed and fixed sensor networks that have been constructed
in application-specific ways. They include many challenges
from diversified points of view such as development of sensor
nodes, communication facilities, network architectures, soft-
ware architectures and algorithms [2], [3], [4].

To effectively utilize these sensor networks where an enor-
mous number of various sensors will be included, we will also
need innovations in sensory information processing. One of
important issues is how to map a sensing task into the network
of distributed sensors, that is, how to determine a set of sensors
to be activated and integrate the information obtained by them.
It must be optimized considering various kinds of conditions
such as computational complexity, network bandwidth, com-
munication delays, and power dissipation. Activating all of the
available sensors might be undesirable for networks with band-
limited communication media or battery-constrained sensor
nodes; it is important to evaluate each sensor and accordingly
specify a set of sensors to be activated.

This paper proposes a multi-sensor fusion method suited for
integrating data from a huge number of sensors, and a method
of evaluating each sensor to specify a set of sensors to be
activated, where the effect of communication delays between
sensors and the user is taken into account. When a state of
interest is to be estimated in real time, a sensor with a too long

delay is almost useless no matter how accurate the sensor is.
On the other hand, a sensor that suffers from too much noise
is also ineffective no matter how short its delay is. Appropriate
handling of this tradeoff is required.

In the section II, the proposed sensor fusion method based
on the Kalman filter is described. In the section III, the sensor
selection method that resolves the above stated tradeoff is
described. Experimental results are shown in the section IV.

II. DELAY-TOLERANT KALMAN FILTERING

A. Related Work and Strategy

Kalman filtering in a situation where communication delays
exist in delivery of sensory information is defined as a problem
to find the linear minimum variance estimate given all the
observations that arrived at the user (or filtering processor) up
to the current time, bearing in mind that any observations that
have not arrived are not available for estimation.

The usual Kalman filter has a recursive form, that is, the
optimal estimate is obtained by fusing the observation with
the predicted state from the optimal estimate at the previous
time step. It assumes no delay in sensory information delivery.

Delays can be coped with by applying only time-update
(predict) operations after the time of observation of which in-
formation arrived most recently, provided that the observations
arrive in order. When information of an earlier observation ar-
rives after arrival of a later observation, the belated information
cannot be fused and is simply wasted.

It is easily found that we can permit time delays of L − 1
time steps at most if we calculate the optimal estimate starting
from the estimate at L steps behind, instead of starting from
1 step behind.

However, performing this in a simple way will cost huge
computation time and memory amount, since we have to store
all the observations from all the sensors until they get L steps
old, and execute the observation update procedure for each
stored observation for each time step. It is thus not scalable
with respect to the number of sensors.

Maeyama et al. proposed a retroactive sensor data fusion
algorithm based on the Kalman filter, where sensory data with
delays are coped with [5]. It rather focused on the scalability
with respect to the maximum length of delays, L in our
notation, while we prefer the scalability with respect to the
number of sensors.



Durrant-Whyte et al. proposed decentralized Kalman filter-
ing for data fusion in sensor networks [6], [7], [8]. This series
of work is based on Hashemipour et al.’s parallel Kalman
filtering [9], and can be regarded as its decentralized extension
where the existence of the central processor is removed.

Decentralization by Rao et al. [7] assumed network topolo-
gies where all the nodes are fully connected to every other
node. Grime and Durrant-Whyte [8] extended this architecture
to support tree-connected network topologies by introduction
of an additional filter associated with each communication
link.

All of these architectures of the parallel Kalman filter
assumed that every communication link has no, or sufficiently
short, time delays. Although Grime and Durrant-Whyte’s
method [8] is also one of those kinds, it is notable in that
it did not assume fully connected topologies and thereby
sensory information is allowed to be delivered with delays
by passing through several nodes. In that sense, it achieves
optimal filtering in a situation with communication delays.

However, their method handles communication delays with
a combination of filtering at every node and filtering at every
communication link. Thereby sensory information cannot pass
through any nodes that do not implement the filters. This
means that their method can be applied only to closed and
application-specific networks. In TCP/IP networks for exam-
ple, intermediate nodes just relay packets and no filtering oper-
ations can be embedded in them. In wireless communication,
even one-hop delay cannot be neglected. In a heterogeneous
networking environment, we cannot assume all of the nodes
to be under our control.

This section describes an algorithm for the Kalman filter that
achieves optimal filtering in a situation with communication
delays, scalability with the number of sensors, and allowing
implementation at only end nodes.

B. Algorithm

We assume the dynamics of the state of interest x and the
observation y are described as

x(k + 1) = A(k)x(k) + B(k)u(k) (1)
y(k) = C(k)x(k) + w(k) (2)

E [u(k)] = ū(k), E [w(k)] = w̄(k)

E
[
(u(k) − ū(k))(u(l) − ū(l))T]

= δklU(k)

E
[
(w(k) − w̄(k))(w(l) − w̄(l))T]

= δklW (k)

E
[
(u(k) − ū(k))(w(l) − w̄(l))T]

= O

where x(k) is the state of interest at time instant k, and y(k) is
the observation at time k. The vectors u(k) and w(k) are the
process noise and the observation noise at time k, respectively.
E [·] denotes expectation and δij is the Kronecker delta.

It is a well-known result of the Kalman filter theory that the
optimal estimate x̂(k | k − 1) of the state at time k given the

observations up to time k − 1 is obtained by

x̂(k | k − 1) = A(k − 1)x̂(k − 1 | k − 1)
+ B(k − 1)ū(k − 1) (3)

P (k | k − 1) = A(k − 1)P (k − 1 | k − 1)AT(k − 1)
+ B(k − 1)U(k − 1)BT(k − 1) (4)

and the optimal estimate x̂(k | k) at time k given the
observations up to time k by

P (k | k) =
{
P−1(k | k − 1) + CT(k)W−1(k)C(k)

}−1
(5)

x̂(k | k) = x̂(k | k − 1) + P (k | k)CT(k)W−1(k) {y(k)
− (C(k)x̂(k | k − 1) + w̄(k))} (6)

where P (i | j) denotes the estimate error covariance at time
i given the observations up to time j, that is,

P (i | j) ≡ E
[
(x̂(i | j) − x(i))(x̂(i | j) − x(i))T]

. (7)

These procedures are sometimes referred to as time update
and observation update, respectively.

When the observation system is comprised of m sensors and
observations by different sensors are mutually uncorrelated,
the above observation equation can be partitioned into

yi(k) = Ci(k)x(k) + wi(k) (i = 1, 2, · · · ,m)

y(k) =
[
yT

1(k),yT
2 (k), · · · ,yT

m(k)
]T

C(k) =
[
CT

1 (k), CT
2 (k), · · · , CT

m(k)
]T

w(k) =
[
wT

1(k),wT
2(k), · · · ,wT

m(k)
]T

W (k) = blockdiag {W1(k),W2(k), · · · ,Wm(k)} .

This partitioned observation enables the observation update
of Eqs. (5) and (6) to be transformed into

P−1(k | k) = P−1(k | k − 1)

+
m∑

i=1

CT
i (k)W−1

i (k)Ci(k) (8)

P−1(k | k)x̂(k | k) = P−1(k | k − 1)x̂(k | k − 1)

+
m∑

i=1

CT
i (k)W−1

i (k) {yi(k) − w̄i(k)} . (9)

This is based on a form of the Kalman filter that is expressed
in terms of the inverse of the error covariance rather than the
error covariance itself. This form is known as the information
form, or the information filter [10]. It is utilized in many
implementations of the parallel Kalman filter, and proved to
be well suited for multi-sensor situations [6].

Equations (8) and (9) show that only the summations of the
observation data are needed for one-step observation update.
As an implementation, we thus need to prepare L information
buffers that correspond to the past L time instants, and to add
received sensory information to the corresponding buffers.

Based on the above discussion, we construct an algorithm of
Kalman filtering that permit communication delays as follows.
The algorithm is depicted in Fig. 1.
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Fig. 1. Operation of the Delay-Tolerant Kalman filter.

Algorithm 1: Each sensor transmits the information state
CT

i (k)W−1
i (k) {yi(k) − w̄i(k)} and the error information

CT
i (k)W−1

i (k)Ci(k) to the user with the time stamp k.
The user has the information state buffers i(j) and the error

information buffers I(j) (j = k − L + 1, · · · , k for each) to
store the received corresponding sensory information.

At each time instant, the user executes the following pro-
cedures:

1) Receive information CT
i (j)W−1

i (j) {yi(j) − w̄i(j)}
and CT

i (j)W−1
i (j)Ci(j) from a sensor i, and add them

to the buffers corresponding to the time stamp j:

i(j) := i(j) + CT
i (j)W−1

i (j) {yi(j) − w̄i(j)}
I(j) := I(j) + CT

i (j)W−1
i (j)Ci(j)

Repeat this for all the sensory data that arrive at the user
at this time instant, except for the case j < k − L + 1
where the sensory data are discarded. It should be noted
that this procedure just executes addition, and thus the
iteration with respect to the number of arriving sensory
data will not cause severe increase of computation time.

2) Perform time-update and observation-update procedures
starting from x̂(k−L | k−L) to x̂(k | k). Specifically,
for j = k − L + 1, k − L + 2, · · · , k begin

P (j | j − 1) := A(j − 1)P (j − 1 | j − 1)AT(j − 1)
+ B(j − 1)U(j − 1)BT(j − 1)

x̂(j | j − 1) := A(j − 1)x̂(j − 1 | j − 1)
+ B(j − 1)ū(j − 1)

P (j | j) :=
{
P−1(j | j − 1) + I(j)

}−1

x̂(j | j) := P (j | j)
{
P−1(j | j − 1)x̂(j | j − 1)
+ i(j)}

end
is executed. Along with this calculation, store x̂(k−L+
1 | k − L + 1) and P (k − L + 1 | k − L + 1) for the
next time instant.

3) Release the memory spaces for the buffers i(k − L +
1) and I(k − L + 1). Allocate new memory spaces for
i(k + 1) and I(k + 1), and initialize them with a zero
vector 0 and a zero matrix O.

�
In the rest of this paper, this algorithm is called DTKF (Delay-
Tolerant Kalman Filter) for short.

III. SENSOR SELECTION METHOD CONSIDERING DELAYS

This section describes a method of evaluating sensory in-
formation that arrives with time delay based on the framework
presented in the previous section.

A. Strategy

On sensor selection, it is obviously desirable to select a
sensor that brings about much information about the state
of interest and reduces uncertainty associated with it. Mutual
information has thus been widely used to evaluate sensors or to
optimize sensing behaviors. We shall derive a simple algorithm
based on DTKF to compute mutual information for a situation
with delays.

In the strict sense, mutual information must be evaluated
for any feasible combinations and for any feasible time series
of sensor selection. It is, however, not realistic for real-time
processing. In addition, evaluating the whole sensing time
series requires discussion on stationary processes, and cannot
be applied to dynamically varying situations.

For these reasons, we shall discuss how much information is
brought about to the current-time estimate when an observation
by a sensor arrives with a delay, and investigate the perfor-
mance of the sensor selection based on this approximation.

B. Algorithm

It is well known that the mutual information between the
observation and the estimate of the state can be computed from
the estimate error covariance when the process noise and the
observation noise are Gaussian [11]. The mutual information
for the case with communication delays can be derived just in
a similar way to the case without delays [12] as follows.

Let y be the observation that we want to evaluate, and Y
be the set of all the observations the user has received except
y. The mutual information between y and the estimate of
the state xY given all the observations except y is, from its
definition, given by

Imutual(xY ;y) = Imutual(y;xY)

=
∫∫

p(y)p(x | Y,y) log
p(x | Y,y)
p(x | Y)

dxYdy

= E

[
log

p(x | Y,y)
p(x | Y)

]
(10)

where p(·) and p(· | ·) denote probability density and condi-
tional probability density, respectively.

The conditional probability density functions p(x | Y) and
p(x | Y,y) are expressed as

p(x | Y) =
exp

{− 1
2 (x − x̂Y)TP−1

Y (k)(x − x̂Y)
}

√
(2π)n|PY(k)|

p(x | Y,y) =
exp

{
− 1

2 (x − x̂Y,y)TP−1
Y,y(k)(x − x̂Y,y)

}
√

(2π)n|PY,y(k)| .

We can see that x̂Y(k) is the estimate obtained by DTKF
given all the information except y, x̂Y,y(k) is the one given
all the information including y, and PY(k) and PY,y(k) are



the estimation error covariances for those cases. Substituting
these density functions into Eq. (10) gives

Imutual(xY ;y) =
1
2

log |PY(k)P−1
Y,y(k)|. (11)

Equation (11) provides means to calculate the mutual in-
formation between sensory information from a sensor i and
the estimate during the execution of DTKF. Here, we assume
that the communication delay τi and the error information
CT

i (k − τi)W−1
i (k − τi)Ci(k − τi) associated with the sensor

i are known.
When a user executes the DTKF algorithm at time k, a

sensor i is either selected to be used for the sensor fusion or
not selected. If selected, the error covariance P (k | k) obtained
by DTKF is based on the sensory data including one from the
sensor i. Hence this gives PY,y(k). Removing the contribution
of the sensor i from this gives PY(k), and this removal is easily
realized by subtracting, since the contribution has been simply
added to the error information buffer.

On the other hand, if the sensor i is not selected, the error
covariance P (k | k) obtained by DTKF gives PY(k). To obtain
PY,y(k), we just need to add the contribution of the sensor i
to the error information buffer.

By this means, we can calculate Eq. (11) for both of the
cases. The algorithm can be described as follows.

Algorithm 2: Let S be the set of sensor indices that are
selected currently. After the error covariance P (k | k) is
obtained by using DTKF, execute the following procedure:
if i ∈ S then

PY,y(k) := P (k | k)
α := −1

else
PY(k) := P (k | k)
α := 1

end

for j = k − L + 1, k − L + 2, · · · , k begin
P (j | j − 1) := A(j − 1)P (j − 1 | j − 1)AT(j − 1)

+ B(j − 1)U(j − 1)BT(j − 1)
if j = k − τi then

P (j | j) :=
{
P−1(j | j − 1) + I(j)
+ αCT

i (j)W−1
i (j)Ci(j)

}−1

else
P (j | j) :=

{
P−1(j | j − 1) + I(j)

}−1

end
end

if i ∈ S then
PY(k) := P (k | k)

else
PY,y(k) := P (k | k)

end
At this point, both of PY,y(k) and PY(k) are obtained.
Calculate the mutual information according to Eq. (11). �

This is an algorithm that evaluates just one sensor. Con-
sequently the computation time needed to evaluate multiple
sensors linearly depends on the number of the sensors. But this

is not a crucial disadvantage because evaluation of sensors,
or sensor selection, is not needed for every step unlike the
filtering algorithm.

It should also be noted that the assumption that the delay τi

and the error information CT
i (k − τi)W−1

i (k − τi)Ci(k − τi)
are known is not needed for DTKF, but needed only for the
mutual information calculation. If these are unknown on sensor
selection, it will degrade only the accuracy of selection and
the result of DTKF is guaranteed to agree exactly with the
optimal estimate by the selected sensors.

IV. EXPERIMENTAL RESULTS

We evaluated the proposed algorithms by numerical experi-
ments. A target tracking task by high-speed vision sensors (e.g.
[13]) was modeled as follows: The state vector represents the
position and velocity of the target x ≡ (x, y, z, ẋ, ẏ, ż)T, and
its dynamics is given by

A(k) =
(

I3 ∆tI3

O3 0.99I3

)
, B(k) = I6,

U(k) = σ2
u diag {0, 0, 0, 1, 1, 1}

where ∆t = 0.001[s].
The sensors are assumed to be orthogonal projection cam-

eras that output the target positions in the image-plane coordi-
nates. Each camera is directed randomly, and has its individual
observation noise covariance, that is,

Ci = ( I2 02 )R(θi, φi, γi)( I3 O3 )
Wi = σ2

i I2

where R(θ, φ, γ) is a rotation matrix, and θi, φi, γi and σi are
randomly determined for each sensor i.

Each sensor has an individual and time-variant communica-
tion delay. The delay when a sensor i transmits its observation
is modeled as a white Gaussian random sequence with a
distribution N(d̄i, σ

2
d), where d̄i is the mean delay determined

for each i, and σ2
d is a constant common for all the sensors.

Firstly, performance of DTKF was evaluated in comparison
with the conventional Kalman filter where belated sensory data
are dropped. Four different parameter setups were examined.
An experiment for each setup contained 50 trials. In each
trial, target trajectory and sensor configuration were generated
randomly, and the conventional Kalman filter and DTKF were
executed to estimate this trajectory for 100 time steps.

For all the setups, we used the parameters in Table I. The
parameter σ2

i were set in different manners for the four setups:
Setup 1 Generated to distribute uniformly in interval (0, 1.02)
Setup 2 Generated to distribute uniformly in interval (0, 5.02)
Setup 3 σ2

i = 0.1 × 1.02 if d̄i > L/2; otherwise σ2
i = 0.8 × 1.02

Setup 4 σ2
i = 0.1 × 5.02 if d̄i > L/2; otherwise σ2

i = 0.8 × 5.02

The setup 1 and 2 were to simulate situations where the sensors
are randomly configured, whereas the setup 3 and 4 were to
simulate situations where the tradeoff between the delays and
the sensing accuracy is arbitrarily elicited.

Figure 2 shows the mean square errors (MSE) over the 50
trials for the four setups. Indices of the lateral axis represent



TABLE I
PARAMETER SETUP IN DTKF EVALUATION.

parameter value

# of sensors m 20
maximum delay L 10

σ2
d 2.02

σ2
u 1.02

d̄i uniformly distributed in (1, L)

1 2 3 4
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traditional Kalman filter and prediction
delay−tolerant Kalman filter (proposed)

Fig. 2. Performance evaluation of the proposed delay-tolerant Kalman filter.

the four setups. The left side of a group of two bars shows
the MSE by the conventional Kalman filter, and the right
side shows the MSE by the proposed method. It is clearly
shown that the proposed method provides better performance.
In particular, the setup 4 where the observation noise is large
and arbitrarily given shows significant improvement, presum-
ably because the conventional filter dropped much valuable
information from distant but accurate sensors.

Secondly, the proposed sensor selection method was eval-
uated in comparison with other three criteria for selection:
random, mutual information, and length of mean delay. At
every fifth time step, the four criteria including the proposed
one were computed, and a prescribed number of sensors were
selected according to each criterion. Sensory information from
the selected sensors was fused by the above proposed DTKF
at every time step. We examined four parameter setups shown
in Table II. For each setup, 50 trials of 100-step estimation
based on the four selection criteria were performed.

Figure 3 shows the MSE over the 50 trials for the four
parameter setups. Indices of the lateral axis represent the four
setups as in the case with Fig. 2. A group of four bars consists
of, starting from left to right, the MSE by random selection,
by the mutual information only, by the length of mean delay,
and by the proposed method.

As a whole, the proposed method offers good, or at least not
bad performance. When the observation noise is large or the
number of selected sensor is small in particular, the proposed
method is clearly advantageous.

TABLE II
PARAMETER SETUPS IN THE EVALUATION OF SENSOR SELECTION.

setup 1 2 3 4

# of sensors m 20

# of selected sensors 5 3

maximum delay L 10

σ2
i (interval in which σ2

i
is uniformly distributed)

(0, 1.02) (0, 5.02) (0, 0.22) (0, 1.02)

σ2
u 1.02

σ2
d 2.02

d̄i uniformly distributed in (1, L)

1 2 3 4
0

2

4

6

8

10

12

14

m
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n 
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 e
rr

or
 [m

2 ]

fixed set selected at random
without considering delay
considering only delay
mutual−info considering delay (proposed)

Fig. 3. Performance evaluation of the proposed sensor selection method.

On the other hand, when the observation noise is not
so large, the method based simply on the mean delay also
provides comparable performance. Let us see closely some
samples from the trials to find the reason for this.

Figure 4 shows the profiles of the sensors and the time
series of selection by the proposed method in a sample trial
among the 50 trials for the setup No. 3, where observation
noise is small. The profiles on the left side show the mean
delay (blue) and the normalized amount of observation noise
(green) of each sensor; the selection time series on the right
side shows the set of sensors selected at each time step with the
orders of priority for selection. It is observed from this figure
that the sensors with small mean delays were preferentially
selected. This means the selection by the proposed method is
equivalent of the selection based on the mean delay for this
particular setup. This behavior can be justified considering that
contribution by selecting an accurate sensor is relatively small
when observation noise is averagely small.

By contrast, when observation noise is large, a sensor
with a short delay is not always attractive and the propose
method takes into account both of communication delays and
accuracy of sensing as shown in Fig. 5. These results show
that the proposed method achieves adaptability to various
circumstances.
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Fig. 4. Profiles of the sensors and the sequence of selection; a sample among the trials for the setup No. 3 (small observation noise).
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Fig. 5. Profiles of the sensors and the sequence of selection; a sample among the trials for the setup No. 2 (large observation noise).

V. CONCLUSION

In this paper, we proposed a sensor fusion algorithm based
on the Kalman filter that permits communication delays and a
sensor selection algorithm built on it. Future work will involve
decentralizing the algorithms for scalable implementation, and
application to real tasks.

REFERENCES

[1] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the
physical world with pervasive networks,” IEEE Pervasive Computing,
vol. 1, no. 1, pp. 59–69, 2002.

[2] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in ACM/IEEE
Int. Conf. Mobile Computing and Networking, 1999, pp. 263–270.

[3] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next century challenges:
Mobile networking for “Smart Dust”,” in ACM/IEEE Int. Conf. Mobile
Computing and Networking, 1999, pp. 271–278.

[4] G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, W. J. Kaiser, and
H. O. Marcy, “Wireless integrated network sensors: Low power systems
on a chip,” in European Solid State Circuits Conference, 1998.

[5] S. Maeyama, A. Ohya, and S. Yuta, “Non-stop outdoor navigation of a
mobile robot – retroactive positioning data fusion with a time consuming
sensor system –,” in IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
1995, pp. 130–135.

[6] H. Durrant-Whyte and M. Stevens, “Data fusion in decentralised sensing
networks,” in ARO Workshop on Intelligent Systems, 2000.

[7] B. S. Y. Rao, H. F. Durrant-Whyte, and J. A. Sheen, “A fully decentral-
ized multi-sensor system for tracking and surveillance,” Int. J. Robotics
Research, vol. 12, no. 1, pp. 20–44, 1993.

[8] S. Grime and H. F. Durrant-Whyte, “Data fusion in decentralized sensor
networks,” Control Engineering Practice, vol. 2, no. 5, pp. 849–863,
1994.

[9] H. R. Hashemipour, S. Roy, and A. J. Laub, “Decentralized structures
for parallel Kalman filtering,” IEEE Trans. Automatic Control, vol. 33,
no. 1, pp. 88–94, 1988.

[10] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood
Cliffs: Prentice-Hall, 1979.

[11] S. Omatu, Y. Tomita, and T. Soeda, “An alternative expression of the
mutual information for Gaussian processes,” IEEE Trans. Information
Theory, vol. 22, pp. 593–595, 1976.

[12] S. Arimoto, Kalman Filter. Tokyo: Sangyo Tosho, 1977, (in Japanese).
[13] T. Komuro, I. Ishii, M. Ishikawa, and A. Yoshida, “A digital vision

chip specialized for high-speed target tracking,” IEEE Trans. Electron
Devices, vol. 50, no. 1, pp. 191–199, 2003.


	header: Proceedings of the 2004 IEEE                                   International Conference on Robotics & Automation      New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 206
	02: 207
	03: 208
	04: 209
	05: 210
	06: 211


