
��������������������	��
�
����
�

� ��������

A Dynamically Reconfigurable Architecture
Combining Pixel-Level SIMD and

Operation-Pipeline Modes for High Frame Rate
Visual Processing

Nao Iwata, Shingo Kagami and Koichi Hashimoto
Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan

Email: swk(at)ic.is.tohoku.ac.jp

Abstract— This paper describes a new reconfigurable processor
architecture specialized for high frame rate visual processing.
This architecture employs a 2-D mesh processing element (PE)
array in which the PEs can be configured to operate as SIMD
arrays or operation-pipeline trees depending on image processing
algorithms so that maximum on-chip memory consumption
is reduced. To achieve high on-chip memory utilization, the
architecture features that the instruction register in each PE
is mapped in its local memory space and that the ALU network
and the local memory network can be configured independently.
Simulation results show that the proposed architecture effectively
utilizes both of the SIMD and operation pipeline modes.

I. INTRODUCTION

High-speed real-time vision systems, which operate at a
frame rate such as 1,000 frames/s, have been intensively
investigated and developed in recent years. One type of
implementation of such systems is a vision chip, which is a
CMOS image sensor in which a processing circuit is integrated
with a photo detector in each pixel. Recent progress of the
CMOS image sensor technology has been enabling high-speed
image readout, which contributes to realizing implementation
with images processors separated from the sensor.

One of the most classical and commonly-used architectures
for high-performance image processing is the pixel-parallel or
pixel-level SIMD array. Also for high frame rate vision, due
to its inherent affinity to image processing and its simplicity
of implementation, it has been employed, in particular, by the
systems based on or derived from vision chips [1], [2], [3],
[4]. The column-level SIMD has also been used for high-speed
vision systems especially in specially targeted systems that can
exploit its column-parallel nature [5].

Recent progress of FPGAs introduced more diverse hard-
ware designs for high-speed visual processing areas. FPGA-
based specialized hardware implementations of individual
algorithms such as the connected component labeling and
various integral transformation have been proposed for the
systems employing [6] or assuming [7] high-speed CMOS
imagers. A high-speed target tracking system that utilizes
preprocessing in FPGA and postprocessing in PCs has also
been reported [8].

Although development of high-speed vision systems have
been vigorously carried out as shown above, there have been
few studies from the architectural point of view aiming at
general-purpose programmable high-speed vision systems.

In designing high frame rate vision systems, it is most likely
that the I/O subsystem becomes a bottleneck. In other words,
supplying the processors with image data at sufficient speed is
more difficult than building a high-speed and highly parallel
image processor. In particular, under the circumstances where
I/Os between the processor and external memories frequently
occur, the overall performance substantially degrades from the
peak performance. The pixel-level SIMD array architectures
can be regarded as being ideal from this point of view because
they are built on the assumption that the data set is always
within the array instead of external memories. This point, on
the other hand, introduces the problem of high requirement
for the memory size per pixel. According to the experience
of the authors, the memory size should be more than 100
bit per pixel for various image processing algorithms to be
implemented without difficulty in a pixel-parallel SIMD array,
and it occupies the major part of the chip area. This results in
low area efficiency and thus pixel-parallel SIMD arrays with
high spatial resolution are hard to be built.

This paper discusses a new programmable parallel pro-
cessing architecture for high frame rate vision systems. In
particular, our goal is to achieve a compact system suited
for embedded implementation. Based on a pixel-level SIMD
architecture, we adopt dynamic reconfigurability to it so that
the precious per-pixel memory resource is efficiently utilized.

As an existing example of employing a dynamically re-
configurable processor for high-speed vision processing, im-
plementation of connected component labeling using the
DAPDNA-2 processor [9] is notable, which achieved 320
Mpixel/s. While the DAPDNA-2 is a general-purpose proces-
sor for wide use, our goal is to build an architecture that is
specialized for high-speed real-time vision processing.

II. DESIGN STRATEGY

One of the reasons for the memory inefficiency of pixel-
level SIMD architectures is because it must execute the entire



series of image processing including graylevel processing and
binary processing uniformly in a plain SIMD array.

Consider a typical image processing flow in high-speed real-
time vision. In earlier stages of image processing, after image
acquisition, graylevel processing including noise reduction and
feature enhancement such as edge enhancement and feature
point detection are carried out. In these graylevel processing,
the bits expressing the graylevel of input image must be
allocated for each pixel at least, and in general much more is
needed as temporary storage for computation. In later stages,
on the other hand, the required memory amount is often greatly
reduced since these stages mainly deal with reduced image
data such as binary images or regions of interest.

When we design a pixel-level SIMD image processor, we
must determine the per-pixel memory size so that it is not
less than the peak memory usage over the series of image
processing. Most of the on-chip memories are only used for a
limited time and just idle for the other time.

Focusing on this point, we design the proposed architecture
assuming that the pixel-level SIMD processing is applied
mainly to the later stages after the required memory amount
is reduced, which results in a reduced memory size for each
pixel. On the other hand, a series of graylevel image processing
over the whole image is carried out in a systolic array manner
where the processing elements (PEs) are connected so that they
form operation-pipeline networks according to the processing
algorithms. The input image data from the frame memory are
first fed into these pipeline networks, and the outputs from the
pipelines, of which the data size are typically much reduced,
are then processed in an SIMD manner.

To this end, we propose a 2-D mesh PE array architecture
that is basically a pixel-level SIMD array and is also dynam-
ically reconfigurable to form pipeline networks with each PE
serving as a pipeline stage. Main contributions of this paper
are that (1) the local memory networks can be configured
independently from the ALU networks, which enables flexible
utilization of the local memories in the operation-pipeline
mode, and that (2) the instruction register in each PE can
be used as data storage in the SIMD mode, which enables
maximum utilization of the storage area.

III. ARCHITECTURE

A. Whole Structure

The whole structure of the proposed architecture is shown in
Fig. 1. It basically consists of a 2-D mesh-connected PE arrays.
Each PE is mainly composed of an ALU, some registers, a
local memory and communication links with adjacent PEs.

Instructions to the PEs, of which the size is 32 bits, are
delivered through an instruction bus that is common to all the
PEs in the SIMD mode. On the other hand, in the operation-
pipeline mode, an instruction for a PE is stored in a dedicated
instruction register within the PE. A PE executes the stored
instruction every cycle repeatedly.

For our goal, employing a 1-bit ALU like many existing
pixel-level SIMD arrays [1], [2], [3], [4] will suffer from large
overhead because we must implement the 32-bit instruction

PE

frame memory

row
 controller

column controller

pipeline reg.
/ accumulator

local
memory

inst.-
reg.

memory address / control bus

colum
n data bus

instruction bus

ALU

bypass
lines

y-coordinate busx-coordinate bus

colum
n data buses

Fig. 1. Whole structure of the PE array.

8

output from
neighbor PEs

bypass from 
neighbor PEs

MUX

8-bit register

8

8

8

8

MUX
8

carry-out to 
neighbor PEs

8-bit ALU

0

local
memory

immediate

8

8

8

8

8

carry 
register

0

1

bypass to 
neighbor PEs

carry-in 
from

neighbor 
PEs

X/Y-coordinate 
bus

output to
neighbor PEs

Fig. 2. Structure of the PE.

register and relatively complicated inter-PE communication
links in each PE. This motivated us to employ a multi-bit
ALU instead of 1-bit ones, namely an 8-bit ALU. We do not
assume that the number of the PEs equals to the number of
pixels. A block of adjacent pixels is allocated to a PE, and the
pixels within a block are iteratively processed.

The local memories are controlled on the row basis. An
address bus and control lines are common to the PEs within a
row, but they are independent across different rows. A data bus
is placed for each column, which is common to the PEs within
a column. The contents in the local memories and instruction
registers in the PEs are directly accessed through these column
data buses. Adjacent column data buses are programmably
connected or disconnected so that they can serve as column-
wise independent buses or access buses for shared memory
blocks consisting of adjacent multiple columns.

The PE array also contains image coordinate value buses,
which are useful for pixel-level SIMD processing depending
on image coordinates such as geometrical feature (e.g. cen-
troid) extraction [3], [4].

B. PE Structure and ALU Networks

The detailed structure of a PE is shown in Fig. 2. A PE
contains an 8-bit register in addition to the local memory. In
the SIMD mode, this is used as an accumulator for arithmetic
and logical operations. The ALU takes operands from the
accumulator, the local memory and the accumulators of the



four neighbor PEs. The result of the ALU operation is stored
in the accumulator and a carry register. Bit-wise logical
operations can be applied to processing eight binary image
pixels at a cycle, that is, bitwise SIMD operations within a
PE in the pixel-level SIMD array. Because we assume that the
pixel-level SIMD mode is mainly for binary image processing,
most of the ALU bits would be wasted without this technique.

In the operation-pipeline mode, on the other hand, the 8-
bit register is used as a pipeline stage register. Each PE takes
operands from at most two neighbor PEs, and writes the result
to the pipeline stage register.

A simple 4-neighbor 2-D mesh topology is not sufficient for
complicated data flows. Several measures are taken to address
this issue. Each PE contains bypass connections for the left
from/to right directions and the upper from/to lower directions.
A PE can take operands also from the four neighbor bypassing
outputs. Moreover, a result of an ALU operation can be sent
directly to the neighbor PEs without storing in the pipeline
stage register, which allows multiple ALUs in adjacent PEs
to be chained. The carry input used in arithmetic operations
can also be taken from neighbor PEs without going through
the carry registers, which allows wider-bit operations such as
16-bit or 24-bit arithmetics in a cycle.

These additional components contribute to increasing the
degrees of freedom of layout, and various data flows can be
implemented in the 2-D PE arrays. This flexibility is obtained
at the cost of manageability of delays. This management
must be covered by a development software and it should be
addressed in future work.

The instruction register is mapped in the PE local memory
space, and it can be used as a data storage in the pixel-level
SIMD mode. Typically this is useful because pixel-level SIMD
processing requires as much memory as possible. On the other
hand, if we have extra memory for a target algorithm, the
instruction registers should be left unchanged so that we can
save time to reload the instructions when the array is recon-
figured back to the operation-pipeline mode again. Moreover,
if we have so much extra memory that several instructions
can be stored in the local memory, the multiple context
reconfiguration is possible where multiple pipeline networks
can be switched instantaneously. Note that reconfiguration to
the SIMD mode can always be done instantaneously because
no instruction loading is needed.

C. Local Memory Networks

Operation pipelines for image processing algorithms typi-
cally include relatively large memory components, e.g. line
buffers or processing result stores, within or around the
pipeline networks. These memory components are difficult to
be implemented on a simple array of PEs with tightly-coupled
ALU and local memory. More specifically, the ALUs tend to
be idle at a part of the array where the memories are needed,
and vice versa.

To address this problem, the proposed architecture employs
a local memory network of which the topology can be config-
ured independently from the ALU operation-pipeline network.

The local memory can be connected directly to its left and right
PEs without any help of the ALU. It can also be connected to
the column data bus.

When an operation pipeline requires a line buffer, it is
implemented as a shift register in which the local memories
are connected horizontally. Since a word of the local memory
contains eight bits, a shift register for an M -pixels 8-bits image
is implemented using one PE when the local memory of a
PE contains M words. When a required shift register is too
long to be implemented in a row of PEs, several rows can
be concatenated by connecting them at the left or right ends
through the ALUs.

Because the column data buses can access the local memo-
ries and the buses can be connected, an array of local memories
can also be used as a large shared memory block. For example,
output data from an operation pipeline can be stored into any
local memory within the shared memory block. By storing
output data corresponding to a pixel into the PE that is
assigned for the pixel in the SIMD mode, the reconfiguration
to the SIMD mode can take place instantaneously without any
need for image data relocation. Note that output data cannot
be stored into a PE of which the local memory is incorporated
within a busy operation pipeline. Even in this case, the output
data can be stored into a PE that is in the same column as the
final target PE, and then image data relocation takes place
within the column so that column-level parallelism can be
exploited for fast data relocation.

IV. PRELIMINARY EVALUATION

While our final goal is to implement the architecture as
a full-custom chip, for the present paper we designed our
architecture in Verilog-HDL targeted for an FPGA device. We
assumed that the number of pixels N × N = 128 × 128, and
designed an array with 16 × 16 PEs each of which contains
an 8 [bits] × 20 [words] local memory. We synthesized
our design by XILINX XST in ISE WebPACK 8.2i for
the XC3S1600E (Spartan-3E) device. The circuit occupied
approximately 1,888,000 equivalent gates and the operation
frequency for a single PE was estimated as 46.3 MHz.

As a typical example of high-speed real-time visual pro-
cessing, a target tracking algorithm was programmed in the
proposed architecture. The algorithm consists of (1) 3 × 3
linear smoothing filter, (2) binarization, (3) area filling with
a seed point being the centroid of the target at the previous
frame, and (4) centroid calculation.

The area filling algorithm includes N(= 128) iterations
of (3a) dilation of the window image and (3b) replacing the
window with pixel-wise logical AND of the current image and
the window, where the initial image of the window is the seed
point. This is a popular technique to extract a target from an
image without retaining whole images from frame to frame.

The processes (1) and (2) described above are programmed
in the operation-pipeline mode since they handle grayscale
whole image data. The layout of the filter pipeline is shown
in Fig. 3. The processes (3) and (4) are programmed in the
SIMD mode because they are binary image processing. The



loadNOP

load

NOP

load

NOP

NOPNOP

NOP NOP

NOP

NOP

store

store

++

+ +

++++

++ ++

+

+

+

+

NOP

NOP

<<4

>>4

OR

< <<1 OR

x 1x 1

x 1x 1x 1x 1

x 1x 1 x 2x 2

x 4x 4

x 2x 2

x 2x 2 x 2x 2

loadNOP

load

NOP

load

NOP

NOPNOP

NOP NOP

NOP

NOP

store

store

++

+ +

++++

++ ++

+

+

+

+

NOP

NOP

<<4

>>4

OR

< <<1 OR

x 1x 1

x 1x 1x 1x 1

x 1x 1 x 2x 2

x 4x 4

x 2x 2

x 2x 2 x 2x 2

memory used as
shift register

memory used as
shift register

memory used as
shared memory 

block

memory used as
shared memory 

block

outputoutput

bypassbypass

carrycarry

shift register
connection

shift register
connection

column data buscolumn data bus

Fig. 3. A layout of the smoothing filter pipeline.

TABLE I

COMPUTATION TIMES OF TARGET TRACKING.

task time [clk]

loading instruction 64
image input (128 × 128 pixels, 1 pixel/clk) 16384
3 × 3 smoothing latency 268
reconfiguration to SIMD mode (data relocation) 32
loading previous centroid point 128
area filling (repeated 128 times) 21504
centroid (0th and 1st order moments) 2830

total 41210

input image is read out from the frame memory in the raster
scan order by 1 pixel (8 bits) per clock cycle.

The computation time of the above algorithm was evaluated
through RTL simulation using an input sequence of 128 ×
128 pixels 8-bits images. The results are shown in Table I.
It shows that the frame rate of 1,000 frames/s is achieved at
no more than 42-MHz clock frequency and with such narrow
input image bandwidth as 8 bits per cycle. For k-times larger
images to be handled, increasing the number of PEs and the
input bandwidth by k times is needed.

To evaluate the effectiveness of the mode reconfiguration,
we compared the required memory amount for the above target

0
200

400
600

800
1000

0

20

40

60

0

20

40

60
0

2E+06

4E+06

6E+06

8E+06

0

2E+06

4E+06

6E+06

8E+06

on-chip m
em

ory consum
ption [bits]

number of pixels on a side N [pixels]

number of PEs 
on a side M

pixel-level SIMD only
(optimisic estimate)

operation-pipeline only

proposed

Fig. 4. Comparison of memory consumption.

tracking algorithm in the proposed design with those in a pure
operation pipeline processor and in a pure pixel-level SIMD
processor. The required memory amounts over the whole array
are shown in Fig. 4, where N × N pixels and M × M PEs
are assumed. Note that the data for the pure pixel-level SIMD
are optimistic estimates in which only the input image data
size (= 8N2 [bits]) is considered because temporary memory
consumption highly depends on one’s programming skill in
pixel-level SIMD processors.

With respect to the computation time, the pixel-level SIMD
was always advantageous for the above target tracking algo-
rithm provided that there are no limit for the memory size.
Considering the required memory amount for the pixel-level
SIMD, the authors found that the mode reconfiguration is
reasonable for this algorithm.

We also found that the computation time for the area filling
when we assigned 64 pixels to a PE is approximately 10 times
longer than that when we assigned 1 pixel to a PE. This shows
the bitwise SIMD processing within a PE is effectively utilized
since the gained parallelism is approximately 6.4 for the eight-
parallel SIMD operation.

V. CONCLUSION

A reconfigurable processor architecture specialized for high
frame rate visual processing has been presented. The archi-
tecture exploits the reconfigurability between the operation-
pipeline mode and the pixel-level SIMD mode to achieve high
on-chip memory utilization. Future work will include more de-
tailed evaluation, refinement of the design, and implementation
as a custom chip.

REFERENCES

[1] R. Forchheimer and A. Åström, “Near-sensor image processing: A new
paradigm,” IEEE Transactions on Image Processing, vol. 3, no. 6, pp.
736–746, 1994.

[2] T. M. Bernard, Y. Zavidovique, and F. J. Devos, “A programmable
artificial retina,” IEEE Journal of Solid-state Circuits, vol. 28, no. 7, pp.
789–798, 1993.

[3] T. Komuro, S. Kagami, and M. Ishikawa, “A dynamically reconfigurable
SIMD processor for a vision chip,” IEEE Journal of Solid-state Circuits,
vol. 39, no. 1, pp. 265–268, 2004.

[4] Y. Nakabo, M. Ishikawa, H. Toyoda, and S. Mizuno, “1ms column parallel
vision system and its application of high speed target tracking,” in 2000
IEEE International Conference on Robotics and Automation, 2000, pp.
650–655.

[5] R. Johansson, L. Lindgren, J. Melander, and B. Möller, “A multi-
resolution 100 GOPS 4 Gpixels/s programmable CMOS image sensor
for machine vision,” in 2003 IEEE Workshop on Charge-Coupled Devices
and Advanced Image Sensors, 2003.

[6] K. Fujiwara, K. Yamamoto, and I. Ishii, “Development of all-pixels
processing type high-speed mega pixel vision,” in 12th Symposium on
Sensing via Image Information, 2006, pp. 88–92, (in Japanese).

[7] S. Hirai, M. Zakoji, A. Masubuchi, and T. Tsuboi, “Realtime FPGA-
based vision system,” J. Robotics and Mechatronics, vol. 17, no. 4, pp.
401–409, 2005.

[8] R. Okada et al., “High-speed object tracking in ordinary surroundings
based on temporally evaluated optical flow,” in 2003 IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, 2003, pp. 242–247.

[9] T. Sugawara, K. Ide, and T. Sato, “Dynamically reconfigurable processor
implemented with IPFlex’s DAPDNA technology,” IEICE Trans. Infor-
mation and Systems, vol. E87-D, no. 8, pp. 1997–2003, 2004.


	Welcome Page
	Table of Contents
	Author Index



