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Menu: Course I 1

e Basic mathematical tools for control and image process-
ing

Tools for visual servo: cameras and software

Image processing basics

Nonlinear control and robot control

Basic visual servo
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3D visual servo

2D visual servo

2.5D visual servo

Sampling time issues

ESM algorithm and visual tracking
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e Basic mathematical tools for control and image process-
ing

Tools for visual servo: cameras and software

Image processing basics

Nonlinear control and robot control

Basic visual servo



Vector elements

e Vector: direction and length
e Vector length: norm

e Example
[fUl]
vV =
VD

— Elements: vq,v57




Coordinate system

e Vector elements should be asso-
Ciated to a coordinate system

e In > = (x1,y1)
1, — [3.6]
5

o In >0 = (zp,y2)

[

e [ he left upper-script shows the
coordinate system in which the
elements are expressed




Coordinate transformation 1

e Matrix 1R, is called coordinate
transformation matrix.

1V = 1R22V,

R

e How to compute 1R, ?

1, —




Coordinate transformation 11

e Bases of 2 5. x95,y»
e [ hese vectors have expressions
in 2.1 as follows

1.2 0.3
1, 1, —
w=loal a=(37

e Recall

V= =]l




Coordinate transformation III 8

e EXpress v in 24

1
v = 2'xp 44y yl  y2

“ ol Vgt |

(1.2 03] [2]

0.3 1.1|[4
3.6 (1.2 03] [2]
[ 5 ] 0.3 1.1 |4
1V = 1R22V

e [ hus we have

"Ry = ['x2 lyz]



Vector norm, Distance of vectors

e For a vector v=[v] vo ---vn]', the norm is given by

IVl = o2+ 03+ +02=vv

e [ he distance d between two vectors u and v is

d(u,v) = [jlu—v|



Image and Kernel 10

e Consider an m x n real matrix M € R™*" where m > n.
(Square or Tall matrix)
e Suppose that M is composed of m column vectors m;:

M=[m; mp -+ my]
e \When we have
y=Mx, xcR" yeR™
then the following equation holds

y =x1mj + romyp + - - - + Ty

where x = [z1,29, -+, zn] |



Image and Kernel II 11

y =x1mj + zomp + - -+ + Ty

e y iS a linear combination of m,.

e By changing x € R"™, y moves in a space spanned by m,;.

e This space is called the image of M and denoted by
ImM.

ImMM={y:y=Mx VxecR"}

e Suppose that we have y = 0 for some x = x;.
e [ he space spanned by these vectors are called kernel of
M and denoted by KerM.

KerM={x:Mx=0}={x:m/x=0, i=1,...,n}

(



Rank of a matrix (full rank) 12

e Suppose that all column vectors are linear independent,
i.e., suppose that if
a1m1—|—a2m2—|—---—|—anmn=0
then we have only one solution
a1 =ap =---=anp =0.

In this case the rank of M is n and the matrix is called
full rank.



Rank of a matrix 13

e If the matrix is not full rank then select n — 1 vectors
from m; and check whether they are linear independent
or not.

o If the maximum number of linear independent vectors is
r then the rank of M is r and written as

rankM = r



Matrix inverse 14

e If M is square and full rank then it has its inverse M1
MM 1=M"1IM=1

e If M is not full rank then it does not have its inverse.



Example 15

e Consider a set of linear equations

a117x1 + a12T2 + a13rx3 = b
an1x1 + a2 + ap3r3 = bo
a31r1 + a3zzx2 + azzrz = b3

e Suppose that a;;,b; (¢,7 = 1,2,3) are known and we want
to find z;(« = 1,2,3) to satisfy these equations.

Ax =Db
e If A is full rank then the solution is

x=A"1pb



Example 16

e If A is not full rank, i.e., if

[ a11 | [ a12 | @13 ]
a; = |ao1 |, ap = |ao> |, a3 = | an3
| a3 | | a3o | | 433 _

are linear dependent, then how to find the best solution?
e Suppose that a3 = aj; + ap. Then the original equation
can be re-written as follows:

b = =zja; +x0ar + x3a3 = (r1 + xr3)a; + (z2 + x3)as
= [a; ao] [wl +$3]
o + x3

b = AXx (3 equations but 2 unknowns)



Example 17

e New system
b = AX
e [ he least square solution of this equation is defined by X
that minimizes

J =||AX — b|| = (AX — b) ' (AX — b)
e It must satisfy

a_{ —2%x'ATA—2b"TA =0
0X

and we have



Example 18

e How to obtain x from x7
e Minimum norm condition (mins):

s =af + a3+ 23 = (71 — 23)° + (T2 — 23)° + 23

l.e.,
s _ —2%1 — 2To + 623 =0, x3= 1(551 + 72)
drs3 3
and we have
2_ 1_ 2_ 1_ 1_ 1_
TrT1 = 5331 - 5552, o — 5332 - gfcla L3 = 5551 T 5332

e [ his solution minimizes

|Ax — bl|| as well as ||x]|



Generalized Inverse 19

e Linear equation
Mx =y

e If M is tall and full rank, (M 'M) becomes square and
full rank and there exists (M M)~1.
e [ he generalized inverse

M =M 'M)~Im'
satisfies a solution that minimizes
X = arg}gnin |Mx —yl|| = M'y
e [ he matrix also satisfies

MMM =M, MMM =Ml



Singular VValue Decomposition I

20

e Very important and useful decomposition!
e Given a m xn (m >n) real matrix M € RMx"%,
e Suppose that the rank of M is r (< n).
e SVD
M=UXV'
where
U = [u; u - um] e RMxm
o1 _
a2
E — ERan
Or
L On




Singular Value Decomposition II

21

e SVD
M=UXV'
where
U'u =uvu'=1, viv=vv' =1

0-1 > 0-22--.20-,',,>O, O-’r'—l_].:...

e Singular value: o; (1 =1,...,n)

:O-n:O



Property of SVD I 22

e M=UxV/'
[0 | [0 | [ O | [ O |
0 0 O O
VTVZ': 1 <—i, 1| = ;| » U o; | — o;U4
0 0 O O
| 0 0] | O | | O |
e [ hus

Mv,; = USV v, = o;u;

e Matrix M rotates the unit vector v; by V!, and magnify
o; and rotate by U; and we obtain o;u;.



Property of SVD II 23

e Since o1 >00>---2>0r >0,

e 01 and vy are called maximum singular value and maxi-
mum singular vector, respectively.

e The ratio o1 /oy is called condition number and plays an
important roll in numerical calculation.

olul

vl

dh

ah
e |/ 02 (/702u2




Property of SVD III

24

e (Generalized inverse of non-full rank matrix
M =vx-lu’

where




Example of SVD 1 25

e Problem: Given M € R™*" (m > n), find x € R" that
satisfies

Mx=0 and |[x||=1

e When rank of M is » (< n), dimension of KerM is n — r.
e T he solution should be in KerM.

vx € KerM, |[|x|| =1



Example of SVD 1 26

e Singular value decomposition of M:

Mv; = o;u;, |lvi|l =1

and o, =0(G=r—+1,...,n).
e Thusv, (i=7r4+1,...,n) are the vectors that span KerM.
e Solution:

n

n
X = Z Q;V; where Z |OAZ| =1
1=r—+1 i=r+1



Example of SVD II 27

e Problem: Let e = Mx and find the solution that satisfy
lel = [Mx|| - min and x| =1

e SVD of M and find v;,(i = 1,...,n). Then x should be
expressed by

2 2
X=x1V1i+- -+ @Tnvp, x1+---+x,=1

e [ hen we have



Example of SVD II 28

e Sinceu; (1=1,...,n) are orthonormal vectors, the norm
of error vector is evaluated by

||€|| :(01331)2+"'+(0n55n)27 012> -on>0
e TO minimize the norm ||e||, it should be
1= =x5p_1=0,zp, =1
e Solution: Thus we finally obtain

X =Vpn

e (Important!) The solution of
lell = |Mx]|| — min, x| = 1

IS X = vy,.



Coordinate system 1

Base coordinate system: 2 g
Object coordinate system: >,
Position of the object: pq
Orientation of the object: R =[x,

Object

Ya
Ph

Zq |




Coordinate system II 30

e A point on the object is given by a constant vector py,

Opbject  p,




Coordinate system 11

31

e Point vector in 24: pp = [:ch,yh,zh]T
e In >, system:

[z, (1] (0] (0]
Ph=|yn| =2p |O| +uyn|1|+2,|0
| 2}, _O_ _O_ _1_
e In 2 o system:
°pr = zpXa + ynya + 2n2a
Th
= [Xa Ya Zal|wn
| 2p,

= Rpy = ORaaPh



2 Link robot I 32

e In > 4, tip of link 1

iR
'po=10
| O
e In 2, tip of link 1
[ 1] [[1 COS0q]
Ops =CPRy(61) | 0| = | i1sin6;
| O | . 0




2 Link robot 1II

33

e In > 5, tip of link 2

e In > 4, tip of link 2

1

_12_
2pe — |0

O

pe = 'Ro?pe+1ps =

[[1 + 1> CcOSs 65 ]
I5sin 6

O




2 Link robot 1II

34

e In 2 o, tip of link 2

Ope

e Orientation of link 2

OR, —

" cos(01 + 02)
sin(61 + 02)

O

Rilpe =Ry

_ll COS 91 -+ l2 C_OS(91 -+ 92) |
[1sinf1 4+ Io Siﬂ(@l + 92)

0

(1 + > CcOSs 65 ]
[>sin 6>

0

—sin(f1 + 62)
cos(f1 + 02)

0

01
O

1.



Homogeneous transformation 35

e Suppose that [z,y,2]' and [z,y, 2, 1]" are identical.
e Also [z,y,z,w]' and [z/w,y/w,z/w,1]" are identical.

e 2 link robot example:
1pe _ 1R2 1Pe 2pe
1 0 1 1

[ORl(t) O]_01] lle(t) 1P2] [2Pe]
0 1 O 1

[ Ope(t) ]
1



Example 36

e Point at [X Y Z]' in camera coordinate system is pro-
jected to

Image Plane
Z=f




Example

37

e In homogeneous transformation

S1Y
1

e Actually we have

st = fX,

and

O O %

o - O

R O O

© O O

= N
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e Basic mathematical tools for control and image process-
ing

Tools for visual servo: cameras and software

Image processing basics

Nonlinear control and robot control

Basic visual servo



What iIs visual servo

39




System

40

Camera
0o

A 4




Control law

41

e Task: Keep object image x = [z,y]' at x* =1[0,0]".

e Model: 1+ — x4+, 0>+ — y+
e Control law:

0= -I\(x—x")=—-)Xx

Camera 0
2




Stability and sampling period 42

Sampling period: T

Motor angle during 1 period: T'Ax

If A\ is big, then the robot moves quickly.

But if both A\ and T are big, then the motor rotate too
much and the response becomes vibratory.

So when T is big we cannot increase .

e If delay exists, then the closed |loop is easily become un-
stable.



Delay in the loop 43

e Image acquisition includes exposure, AD convert, data
transfer from camera to PC, DMA transfer to CPU.

e At least 1 frame delay from exposure to CPU.

e At least 1 frame delay for image processing.

e NTSC has 1/15 sec delay.



Camera resolution

44

e Image intensity at (4,j5) pixel: I,
e Center of mass

e In this case the resolution is not very critical.



Camera resolution 45

e On the other hand, for example template matching, find
(dz, dy) that minimize

u—+w v+w
e(dydy) = Y Y U(4,5) — J( + do, j + dy))?

I=Uu—w J=U—w
where I is template and J is current image.
e With low resolution the features in the original scene is
lost and local matching becomes useless.
e And it is fragile to digitization.



Pyramidal computation 46

e As a recipe to local matching pyramidal computation is
useful.

e For example, matching with Gaussian low pass filter with
different mask sizes are used (OpenCV cvGoodFeaturesTo-
Track(), cvCalcOpticalFlowPyrLK()).




Feature matching 47

e For 3D reconstruction, feature matching with two images
are needed.

e In this case, scale invariant matching methods e.g., SIF T,
SURF, are used. SURF is included in OpenCV (from
1.1).




Image processing tools 48

o OpenCV is very handy and [

s | fepusample

easy to use. - ey
. . ‘— Dmp.pedg no&es with <=0 abs{samples)

e Image processing uses lin-
ear algebra a lot so use of =

Dropped edges with <= 0 samples

BLAS, LAPACK, ATLAS ol
are effective to speed up. ,
e For Intel CPU, Intel Inte- £ N

grated Performance Primi- 0x28167017\ =

. . 37 (90.2%)| \

tives is useful.
e google-perftools: fast mal- e

loc, cpu profiler -, (oxasorrseo|




Camera selection

49

ARTCAM-200MI (USB2.0 480Mbps)

Grasshopper ™(IEEE1394B 800Mbps)

MC1364 EoSens® GE
(GigE Vision™1Gbps)

MC1362 EoSens® CL
(Camera LinkT™2.2Gbps)



Camera selection

50

VGA | SXGA | UXGA
USB2.0 46 — 10
IEEE1394B 200 — -
GigE Vision™ | 300 80 -
Camera Link™ | 1600 | 500 -

VGA (640 x 480)
SXGA (1280 x 1024)
UXGA (1600 x 1200)

ARTCAM-200MI (USB2.0 480Mbps)
Dragonfly Express M(IEEE1394B 800Mbps)
MC1364 EoSens® GE (GigE Vision TM1Gbps)
MC1362 EoSens® CL (Camera Link "™™M2.2Gbps)



Interaction: image processing and control °1




Interaction: image processing and control®?

e TO estimate the helicopter
position, positions of mark-
ers are estimated.

e Set region of interest and
extract features.

e If some markers are not
found, these markers are
occluded.

e If marker information from
multiple cameras do not
match, then do not use the
camera that sent mismatch
data.

- YT WA, P

o m:'::?ﬁz*:nl'u:-‘__""
| |




References 53

OpenCV: http://opencv.willowgarage.com /wiki/

BLAS: http://www.netlib.org/blas/

LAPACK: http://www.netlib.org/lapack/

ATLAS: http://math-atlas.sourceforge.net/

IPP: http://software.intel.com/en-us/intel-ipp/
google-perftools: http://code.google.com/p/google-perftools,



Menu: Course I o4

e Basic mathematical tools for control and image process-
ing

Tools for visual servo: cameras and software

Image processing basics

Nonlinear control and robot control

Basic visual servo



Image Processing 55

Camera model

Camera calibration

Stereo (3D estimation basics)

Epipolar geometry

Fundamental matrix, Essential matrix

Eight point algorithm (3D estimation without calibra-
tion)

e Homography



Image Processing 56

Camera model

Camera calibration

Stereo (3D estimation basics)

Epipolar geometry

Fundamental matrix, Essential matrix

Eight point algorithm (3D estimation without calibra-
tion)

e Homography



Camera position and image

57

e Point at ve. = [z y 2] in camera coordinate system

Vw:ajrx_l_yry_l_zrz_l_t:RVC_l_t




Homogeneous matrix

e Augmented vector

X
Y
Bk
|1
e Homogeneous matrix of internal parameters
EA ' f O O O] ;(
sly|l =10 f 0 O P
|1 0O 0O 1 0. |




Homogeneous transformation

59

e Rigid transformation (external parameters)

szxrm_l_yry_l_zrz—l_t:RVC—l_t

e Augment vy and ve

e Homogeneous transformation

Vw = DVC, D —




Pixel coordinate system

60

e u,v are pixel coordinate

ku(z +y cot ¢) + ug

Uu




Intrinsic parameters

e From position to pixels

u

ku(z + ycot¢) + ug
e Y

sin ¢

slv| =A

| 1]
1

e Intrinsic parameter matrix
A=1|0 fky/sing wvg O
0 0 1 O




Lens distortion

62

e Barrel distortion

Ud

Vd

u(1 + k172 + kor?)
v(1 + kyr? + kor®)



Image Processing 63

Camera model

Camera calibration

Stereo (3D estimation basics)

Epipolar geometry

Fundamental matrix, Essential matrix

Eight point algorithm (3D estimation without calibra-
tion)

e Homography



Camera calibration: setup

e Camera position

vw = Rve 4+ t,

e ODbject image

Ve = Rva “R't

=A[RT

“R't]

= N




Calibration procedure

65

slv| =A[R" —R't]

=N

P=A[R' —-R't]

e Put a checker board at a known position.
e Then [X Y Z]' becomes a known vector.
[
[

We have two equations per point.
Solve for P



Solve linear equations

66

o Let

P =

e [ hen we have

(P11 P1o P13 P1g)
Po1 Poo Poz Poy
P31 P3p P33 P34

P11 X + P12Y + P13Z + P14

u =

P31 X + P32Y + P33Z + P3a
Po1 X + PoY + Po3Z + Pog

P31 X + P32Y + P332 + P34



Calibration

67

e Problem: Find the solution P € R3*4 that minimizes

> ||si

1

Ug
)

1

— P

e Algorithm: For point z we have

2

— min

siz; — (P11X;+ P1oY; + P13Z; + Pi14)
sivi — (Po1X;+ PooY;+ P>3Z; + Ppy)
si — (P31X;+ P32Y; + P33Z; + P34)

and eliminate s;.



Calibration algorithm

63

o Let p= [P11>P12> .. .,P34]T, then

[Xi Y, Z; 1 0 0 00
—xi Xy —xY; —xZ;

0000 X; Y % 1
—YiXi =YY —YiZ;

e Assume P34 = 1, then we have.

L1 dix
Y1 d1y
2 | | 92z
Y2 q2y

| YN | | ANy |

— &y } P = q;xP

—Yi ] P = q;yP

o)



Calibration algorithm 69

e Linear equations
: ~ 112
mﬁ'n ly — QD]

where y and Q are the data vector and matrix.
e Since Q is a tall matrix, the solution is obtained by the
generalized inverse.

p=Qly
e [0 find Lens distortion, nonlinear minimization is neces-

sary. See the calibration package of OpenCV or MAT-
LAB Image processing toolbox.



Image Processing 70

Camera model

Camera calibration

Stereo (3D estimation basics)

Epipolar geometry

Fundamental matrix, Essential matrix

Eight point algorithm (3D estimation without calibra-
tion)

e Homography



Stereo 71

@ 1 %’G 2
% Camera
Parameters

A%

Cameral
Camera?

e Two cameras look at the same point vy, = [X Y Z 1]'.
e Images of that point in two cameras are

my = [ug vy 1], mo = [up vy 1]"



Stereo

72

e Let P{,P> be the projection matrix, then we have

P]_Vw

Ss11mj

SoIMy = PQVw

e Suppose P1,P»> are calibrated as

_ 1 1 1 1
P = P51 Pao P23 Psy




Stereo

73

e [ hen we have
S1uUq
$1v1

S1

P{1 X + PoY + PisZ + Pi4
P31 X + P3oY + PysZ + Pay
P31 X + P3oY + P33Z + P,

e Multiply w1 and vy to the third equation

S1u1 —

S1v1

PHu1X 4+ Piu1Y + PizuiZ + Pijuq
PHv1X + P3ov1Y + Pizv1Z + Pijuq



Stereo

e Subtracting them from first and second equations,
spectively, yields

1 pl 1 pl 1 pl
Piy = P3yur Pip = Papua P13_P33“1]

1 1 1 1 1 1
P51 — P31v1 Pso — P3ov1 Py — P33

-
Y
_Z_.

1 1
| Pagur— Piy

1 1
P3av1 — Py



Stereo

75

e Similarly we have

1 1 1 1 1 1T
Py — P3qu1 Pjp, — Pyou; Pjg— P33uy

1 _ pl 1 pl 1 X
Por = 5101 Poo = Fypun Fog = Fagun |} ©

2 2 2 2 2 2
Py — P3juo P{, — Piup Pig — P33uo

> > > > > >
P51 — P3yv2 Py, — P3yvo Pz — Pizuo




Image Processing 76

Camera model

Camera calibration

Stereo (3D estimation basics)

Epipolar geometry

Fundamental matrix, Essential matrix

Eight point algorithm (3D estimation without calibra-
tion)

e Homography



Two cameras setup

77

World

61 \72
Camera
Parameters

Cameral
Camera2

e Intrinsic parameters: A1, A5
e Geometrical relationship

R=R{Ry, t=Rj(tr—t71)



Epipolar geometry

78

sym; = Ajp[R]
somp = As[RJ



Epipolar geometry 9

sgmy; = Ajq [RI —RItl | v
SomMy — AQ [R;— —R;—tQ]Vw
sl(AlRT)_lml = Vv —tq
s2(AoR5) Tmy = v — to

81R1AI1m1 — 32R2A51m2 =t —t4
AL —1 _
S1/Aq 1My — 82RA2 mo — t

e Interpretation: Three vectors Aflml, RAElmQ, t are on
the same plane.



Epipolar geometry 80

81AI1m1 — SQRAglmQ =1t

e Interpretation: Three vectors Aflml, RAglmQ, t are on
the same plane.




Image Processing 81

Camera model

Camera calibration

Stereo (3D estimation basics)

Epipolar geometry

Fundamental matrix, Essential matrix

Eight point algorithm (3D estimation without calibra-
tion)

e Homography



Skew-symmetric Matrix 82

e L et vector cross product operator be A.
o Aflml and t A (RAglmQ) are orthogonal.
e Introduce a skew symmetric matrix of t = [tz ty t:]"

T 00—ty ty ]
[t]/\ — tz 0 —tx
| —ty  lx 0 |
[ LyUz — t2Uy |
[t] v = |tivg —tgv, | =t AV
| Lxvy — Tyvg |



Fundamental Matrix 83

e Since
slAflml — S2RA51m2 =t
we have
[t]ARAS ms | A7 m,
and

m{ (A71)'[t] ,RAS'my =0
e Fundamental Matrix
F= (A7) [t]\RAS!
e Fundamental Equation

mIFmQ =0



Essential Matrix

84

e Fundamental Equation
mIFmQ =0
F= (A7) [t],RAS?
e Essential Matrix
e Essential Equation
V_lrEVQ =0
where

— A1 — A1
Vl—Al 1mq, V2—A2 mo



Property of essential matrix 85

e For any rotation matrix R and any skew symmetric matrix
T define a set of essential matrix by

E={E:E=TR, R'R=TIand T=[t],}

e For any matrix Q € E is an essential matrix.
e And all essential matrix have eigenvalues A\, A,0 (two du-
plicated and one zero).

QcE «<— Q=UXV' and X =diag{),\,0}



Proof of the property 86

(=) : Let t = ||t|]|z and SVD Q.

e Since
QQT =TRR'TT =TT" = -T2

e Multiply a orthonormal basis [x y z] to T2

T?[xyz] = tAtA[xy z]=|t]|*[-x —y 0]
= [x y z]diag{—|t||*, —||t]|%, O}
T? = [x y z]diag{—||t]|%, —|t]|%, 0}[x y 2] '
e | hus
QQ' = [xy z]diag{||t||* ||t]|?,0}[x y z] "

Q = [xy z]diag{|l¢]|,||t],0}V' =UZV'

where V is any orthogonal matrix.



Proof of the property 87

(=) : Let Q =UXyV' where 3y = diag{\g, Ao, 0}.

e Define R, and decompose Q

(0 —1 O]
0 0 1

Q UXoR,)U'UR. V' = ToRg
To = UXoR./U'", Ry =TUR,V'

e Show that Rg is rotation matrix and T is skew-symmetric.

R.Yo = YoR. = —3oR.)

RJ Ro VR, U'UR,V' =1
T, = UR.,XU' = U R.U' = —UZR,U' = —T



Image Processing 88

Camera model

Camera calibration

Stereo (3D estimation basics)

Epipolar geometry

Fundamental matrix, Essential matrix

Eight point algorithm (3D estimation without calibra-
tion)

e Homography



Eight point algorithm 89

When a corresponding point from two cameras is found
then we have one essential equation.
For N points, we have

mL-EmQj = 0 for 57=1,...N
(€11 €12 €13 ]
E = J|ex ez e23
| €31 €32 €33
where m;; is the image coordinate of j-th point in :-th
camera.

E has 9 elements but it has 1 free dof because we can
multiply a scalar for essential equation.

Thus 8 points are sufficient to estimate E.




Eight point algorithm 90

_ - e
by 11
e
Be = 0, B=| : |, e= 1_2 :
| by |
| €33 ]
b, = [ugju1; wuojvij u2js1;
U2jU1j ’U2j’01j ’U2j81j
§2jU1j S2;V1j 52515 ]
e[| = 1

Problem: Under |le|| =1, find e that minimizes ||Be||.

Solution: SVD B. e is the smallest singular vector. After
that, construct E from e and modify it so that it has singular
values A\, A, O.



Finding motion parameters

o1

e SVD of E
E=UxV'
e Then t and R are given by
t =oqu3, R=UR.,V'

where us is the third column of U.



Code 92

1. Construct B from {(mj;,mp;),i =1,...,N}

B=zeros(N,9);
for i=1:N
ul=m1(1,i); vi=mi1(2,i); wil=m1(3,1i);
u2=m2(1,1i); v2=m2(2,i); w2=m2(3,1i);
B(i,:)=[u2*xul, u2*vl, u2*wl,
v2xul, v2*vl, v2*wl,
w2xul, w2*vl, w2+*wl];

end



2. Find e (|le]| = 1) such that ||Be|| — min.

[UD Vl=svd(B); e=V(:,9);

3. Construct E from e, where traceE'E = 2 [Hartley].

E=sqrt(2)*[e(1:3)7’; e(4:6)’; e(7:9)°];

# residual=trace(m2’*E*ml) ;

4. Find E = TR that minimize ||E — EJ|.

[U D Vl=svd(E);
D=diag((D(1)+D(2))/2, (D(1)+D(2))/2, 0);
hatE=U*D*V’ ;



5. Decompose E to find R and T.

[U, D, Vl=svd(hatE);
t=U(:,3);

Rz=[0 1 0; -1 0 0;0 O 1];
R1=U*Rz*V’ ;

R2=U*Rz’*V’ ;

6. Select a feasible R from R1, R2.



Image Processing 95

Camera model

Camera calibration

Stereo (3D estimation basics)

Epipolar geometry

Fundamental matrix, Essential matrix

Eight point algorithm (3D estimation without calibra-
tion)

e Homography



Homography matrix

96

Show a picture from different viewpoint.




Homography matrix 97

e Suppose that all points are on an plane.

e A complete correspondence of two images from different
view points is obtained by a Homography matrix H.

e Points in camera 1 and 2 are give by

my = [ug v1 1], mo = [up vy 1]’
then we have
S — ng

e [ his equation holds for all points on a plane.



Homography matrix 98

A
i

e n, is a normal vector of the plane.
® No, Vo, Mo are expressed in camera 2 coordinate system,
others are expressed in camera 1 coordinate system.




Homography matrix 99

e do is distance from the point C'> and the plane
1'1_2]—V2 = d»
e R and t are transformation from camera 2 to 1:
vi = Rvy 4+t

e Since

T
—V2=1
2

we have the following equation by multiplying t from left.

e Finally we obtain



Homography matrix 100

e Image of vy from cameras 1 and 2: mi,mo
sim; = A1vy, spmp = Apvo
e T hus we have
S — ng

where



Points to homography matrix 101

e Homography equation

Ul [ h11 hio hiz | | up
s | v = | ho1 hoo ho3 v
1 | h3z1 hzo hzz || 1 |

(u» v 1 0 0 0 O O O] le
= | 0 0 0 u v» 1 0 0 O 12
0 000 0 0 up wp 1

e Substitute s = hzjuo + hzovo + h33

u vo 1 0 0 O —wjup —uyivy —ujy h1o
O O O wy vo 1 —wjun —wvivo —v1




Points to homography matrix 102
e Problem: Find h that satisfy
]
u> vo 1 0 0 O —wjup —ujvy —ujy hq1o . min
0 O O u> vV 1 —vi1Uu —V1V2 —U1 :
| h33

e Solution: Using 4 points on a plane, the solution can be

obtained using SVD (under ||h|| =1).



Code 103

1. Construct data matrix
C=zeros(2+*m,9) ;
for i = 1:m
C(2x(i-1)+1:2%i,:)...
=[u2(i) v2(@i) 1 0 0 0 —ul(i)*u2(i) -ul(i)*v2(i) -ul(i);
0 0 0 u2(i) v2(i) 1 -vi(i)*u2(i) -vi(i)*v2(i) -vi(i)]l;
end

2. SVD
[U,S,V]=svd(C);

3. Resize

sol = V(:,9);
H = [sol(1:3,1)’;s01(4:6,1)7;s01(7:9,1)°];



Position estimation from Homography 194

e When A1, A> are known, we can compute R, t,n,d based
on

tn.
H=A71 <R+—2> As
dp
while a scale indefiniteness of t remains.
e First using intrinsic parameters we have



Position estimation from Homography

105

e And SVD
H=uxv'
where
> =dR +tn''
and
R = sURV', t=Ut, n,=Vrn,
do = sd, s=det(U)det(V)



Position estimation from Homography 106

e Let eq,ep,e3 be a orthonormal basis and let

n' = xi1eq + zoes + z3e3, i CUZQ =1
i=1
e Multiply e; to
S =dR +tn''
yields
oe; =dRe; +tx; for i=1,2,3
and

d’R’(xjez- — xze]) — 0;Xj€; — 0;I;€, for 1%



Position estimation from Homography 197

e Since R preserve vector norm, we have
(d? — 03)af + (d% —df)a3 = 0O
(d? —68)a3 + (d? —d3)z3 = O
(d? — 69)x3 + (d'? — d3)x? 0

e Viewing these equations as a set of linear equations for
x%, 73,73, then the determinant of the coefficient matrix

IS zero.

(d? — 62)(d? - 03)(d? —063) =0



Position estimation from Homography

e Classify by the number of duplication of singular values
o1,00,03 of H

e All singular values are different (o1 > oo > 03)
—d =01 or d

o3 are impossible. Because if d = o1
then we have (0% — 0%)x3 + (02 —d3)x3 = 0 and finally

x1 =20 =23 = 0. d = o3 is also excluded.
— Since d’ = +05, we have

L1

L2

L3

2 2
g1 — 05
2 2
01 — 03
2 2
05 — 03
2 2

01 — 03

€1,60 = £1



Assume d’ > 0. Case for d’ < 0 is similar.
Since d = dy, x> =0, e = R'es and

[ cos® O —sinh |
R = 0O 1 0
sinf O cosé

Thus
2  2N(.2 2
: 123 \/(01 05)(05 —03)
sinf = (o1 —03) = €16
o9 (01 + 03)02
- alajg—l—agzc%_ a%—l—alag)
COS6OH = e
o9 (01 + 03)02
And finally
ey
t=(dy—d3)| O
| — I3

We have 4 cases due to the sign of €1, e5.



e One duplicate singular values (o1 = 05 > 03 0f 01 > 00 =

1)
— Let d' = 01 = 0». Case for oo, = o3 is similar.
— We have 1 = o = 0,23 = €1 = £1 and

R/ — I, t = (d3 — dl)n’

e All singular values are duplicated (o1 = 0o = 03).
— d' = dy = dy = d3. We cannot find z1,zo,z3 and thus

R =1 t=0



Code 111

1. SVD

[U,D,V]=svd(H);
d1=D(1,1); d2=D(2,2); d3=D(3,3);
suv=det (U) *det (V) ; d=d2;

2. No duplicate singular values (compute for 4 cases). n0 is
a normal vector of the plane

n0=[0;0;-1];

x1=sqrt ((d1*d1-d2*d2) / (d1*d1-d3*d3)) ;

x3=-sqrt ((d2*d2-d3+*d3) / (d1*d1-d3*d3)) ;

n=[x1; 0; x3]; t=(d1-d3) *[x1;0;-x3];
st=(d1-d3) *x1*x3/d2; ct=(d1*x3*x3+d3*x1%*x1)/d2;
R=[ct 0 -st;0 1 O;st O ct];



R1=suv*U*R*V’; t1=Ux*t; nl=Vxn; nO0=R*n0;
if (n00(3)<0)
yn(1)=norm(n0-n1l) ;
else
yn(1)=10000;
end

3. Selection

[minn,index]=min(yn) ;
switch index

case 1

R=R1; t=tl1l; n=nl; d=suvx*d;
case 2
% similar

end
H=R+t/d*n0’ ;



Menu: Course I 113

e Basic mathematical tools for control and image process-
ing

Tools for visual servo: cameras and software

Image processing basics

Nonlinear control and robot control

Basic visual servo



State equation 114

e State: x(t)
e Input: u(t)
e State equation

x(t) = £(x(1),u(t))

e Measurement: y(t)

y(t) = g(x(¢),u(t))



Spring, Mass, Damper system 115

k
u Wy

T
1l
d

e Dynamical equation

my + dy + ky = u
e State

Tl =Y, IT2=1yY
e State equation

el = [m —am] 2] *[a/m]



Linear System 116

e State equation

% (t)
y(t)

e Equilibrium point: When the input is zero then the state
will remain at this point.

Ax(t) + Bu(t)
Cx(t)

x(t) =x¢ and x(t) =0 when u(t)=0



Stability

117

e Autonomous system
x(t) = Ax(t)
1. x(t) = 0 is the (only one) equilibrium point.
2. For initial state x(0) = xg, the state will follow
x(t) = e?xg
where

eAt:I—I—At-l- 5 + 3 _|_...:Z
- - i=0

7!



Stability 118

e By diagonalizing the matrix, we have et at the diagonal

element.
" et 0 e 0 ]
T AT _ 0 et L. 0
: . 0
0 0 oo et

e When Re(});) < 0 we have

lim x(¢) =0
t—00
e Asymptotic stability: If the real parts of all eigenvalues
are negative, then the (LTI*) system is asymptotically

stable.

*Linear Time Invariant



Controller 119

e State equation
x(t) = Ax(t) + Bu(t)
e State feedback
u(t) = —Kx(t)
e After feedback, closed loop system
x(t) = (A — BK)x(t)
e Stability can be obtained by selecting an appropriate K.



Observer 120

e State equation

x(1)
y(t)
e Copy of system

Ax(t) + Bu(t)
Cx(1)

2(t) = Az(t) + Bu(t)

e Difference between actual and copy systems

x(t) — z(t)

Ax(t) + Bu(t) — Az(t) — Bu(t)
A(x(t) —z(1))
o Let £(t) = x(t) —z(t). If A is stable,

lim €@ = lim [e*€(0)[| =0



Observer 121

Even if A is not stable, the state can be estimated by
using error feedback.
State equation

x(t)
y(¢)

Estimation error feedback
z(t) = Az(t) + Bu(t) + G(y(t) — Cz())

Feedback system

%(t) — #(t)

Ax(t) + Bu(t)
Cx(t)

Ax(t) + Bu(t) — Az(t) — Bu(t) — G(y(t) — Cz(t)
(A - GC)(x(t) —z(t))

Stability can be obtained by appropriately selecting G.



Nonlinear system 122

e Autonomous system

x(t) = £(x(¢),0) = £(x(¢))
e State feedback

u(t) = ¢(x(t))
e After feedback

x(t) = £(x(¢), (x(1)))

e [his is also an autonomous system



Stability of nonlinear system 123

e Equilibrium point: x. where f(x¢(t)) = 0.

1.

Local stability: Starting from a state sufficiently close
to xe then the solution will stay close to xe.

. Local asymptotic stability: Starting from a state suf-

ficiently close to xe then the state will asymptotically
converge to xe.

. Exponential stability: Starting from a state sufficiently

close to xe then the state will converge to xe expo-
nentially.

. Global stability: Starting from any state then the state

will stay close to Xe.

. Global asymptotic stability: Starting from any state

then the state will asymptotically converge to xe.



Stability of linearized system 124

Equilibrium point: x. where f(x¢) =0
Taylor expansion

of

x(t) = f(xe) + x (x — %Xe) + O((x — x¢)?)

X=Xe

Neglecting higher order terms

s—=Ax, A=
0X

If this linearized system is stable then the original nonlin-
ear system is locally asymptotically stable.

X—=Xe¢



Example of pendulum 125

e Mmass. m, friction coefficient: ~, pendulum length: |
e Dynamical equation

mll 4+ v0 + mgsin® = 0



State equation of pendulum 126

e Dynamical equation:

mlé—l—fy9'—|—mgsin9=0

e State: x1 =0, o = 6

r{1 = X9

ro = —lZUQ—gSin:Ul
ml [

e Equilibrium points: x=[21 5] =[0 0]', i.e.,
xo =0, sinxy =0

e Linearize the system at x=[0 0]' and x=[r 0]'.



Linearized system at 1 =0 127

e When z1 =0
cosx1 = 1 and we have

r0f1 Of1-
A = 9 _ |0z O
8XXO dfz  0f>
L0x1 Oxp 11(0,0)
0 1
(5
[ ml
— 2 _ .2 8 g
det(sl —A) =s“+bs+c=s -|-_l5_|_7
m

Since b >0, ¢ >0, A is stable.



Linearized system at z;1 =« 128

when 1 =«

cosx1 = —1 and we have
0 1
[ ml
_ .2 _ 2 8 g
det(SI—A)—S —|—b8—|—c_3 —|——l5—7
m

Since ¢ < 0, A is unstable.

T his example shows that the pendulum down position is
stable and pendulum up position is unstable.

When v = 0, the eigenvalue of A becomes pure imaginary
and the system is marginally stable (not asymptotically
stable).



Control of nonlinear system 129

0

C\

() C)




Modeling 130

e cart mass: M, pendulum mass: m, pendulum length: 2]
e Internal force: horizontal: Fj, vertical: Fy
e cart position: z, pendulum angle: 6

16 4 jugf = FylcosO + Fylsiné, I = %le
e ['x and Fy — mg generates pendulum acceleration.
2
F, = mdt—Q(a: —[sin®)
2
Fy—mg = mdt—Q(l cosf)

e f— F, generates cart acceleration.

f— Fp = Mi + pga



Modeling 131

e Eliminate the internal force, we have

(M + m)i + mlf cos 0 — mlf?sin 6 + pza
(I + ml?)d + mlz cosd — mglsin 0 + ugh

|
o =



Linearization 132

e Assume that 6 is small.
e Approximation

Ssinf =~ 60,cosf ~ 1
e Linearized system
(M + m)@ 4+ ml + pad
(I + ml?)d + mlz — mgld + ugh
e Neglect force from pendulum to cart

- 1
_M—I—m’
ml

0+ 7in0 -
+ g 6] T+ mi2

~ Hx ~ He
Hx =— - o

Il
o =

T+ prxr = af, Qo

I
|
Q@
K:
_|_
XQ
Q
>




State equation

133

e State equation

X = Ax + bu

where x = [z 0 ¢ 0] ' and

0 O
0 O
0 O
0 DBy

1 O

O 1
— [y 0 ’
Bz  —[g




Controller design 134

e Assume that the state x = [z 6 4 6] is available, then
state feedback

u= —Kx

IS used.
o LQ regulator that minimize
©.@)
J=/ x| X—|—UTR11 dt
, (' |
can be designed using 1gr command of Matlab or octave.



Simulation 135

e a =90, B=3.7, [iz = 240, [ig = 0.02
e R=1 Q =diag[50,1,1,1]
e K=[-7.07,-15.75,-8.21, —2.80]

1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 3.5 4

I
2.5 3 3.5 4



Observer 136

e \When only cart position and pendulum angle are avail-
1 0 O o]
X

able,
_x_
YZle| T lo 1 0 o0

e 1ge command of Matlab or octave is used to obtain

1.00 3.11le — 3
3.1le — 4 1.21
8.64c —6 3.06e — 5

| 4.04e — 3 72.5




Simulation 137

e x(0)=[00.5200]"
e z(0) =[0.5 —0.174 0 0] '
e Observer feedback: v = —Kz

0.8 —
06




Lyapunov Function

138

Lyapunov’s method is to check stability of nonlinear
system by investigating the (generalized) energy of the

system.
Nonlinear autonomous system

x(t) = £(x(%))

Suppose that equilibrium point x¢ is 0.
If x¢ is not 0 then put z(t) = x(¢t) — x¢ and check the
stability of

z =f(x(t)) = £(z(t) + xe)



Positive definite function 139

e State x ¢ R
e Scalar valued function

V(X) ' R" - R

IS said positive definite if it satisfies the following in region
€2 which includes 0

1. V(0) =0

2. Forany xe Q (x#0), V(x) >0

e V(x) > 0: positive semi-definite
e V(x) < 0: negative definite
e V(x) < 0: negative semi-definite



Derivative along trajectory 140

e Derivative of V(x) along its solution trajectory is defined
as follows

dV(x(®) _ V() _ V()

V) =" B ox L)
where
8V(x)_[8v oV G_V]
ox (9:131 (9:132 (9:1377,

e Thus it is actually the inner product of gradient of V(x)
and x = f(x).

oV

Vi(x) = o

0 0
RO+ 5 )+ 4 o)
o Oxn



Lyapunov stability theorem 141

e Sufficient condition of local stability
(LS1) V(x) is positive definite in
(LS2) V(x) is negative semi-definite in Q

e Sufficient condition of local asymptotic stability
(LAS1) V(x) is positive definite in Q2
(LAS2) V(x) is negative definite in Q

e Sufficient condition of global asymptotic stability
(GAS1) V(0)=0and V(x) >0 Vx#0
(GAS2) V(x) <0 Vx#0
(GAS3) When ||x]| — oo, then V(x) — o



Pendulum example 142




Pendulum example 143

e Lyapunov function candidate: total energy

1 2
V = K+P=§m(wl) + mgh

1
= EmZQw% + mgl(1l — cosxzq)
In this case V(0) = 0 is satisfied by x> = 0, cosxz; = 1.
Q2= [(_ﬂ-:ﬂ-)vR]
Then V(x) is positive definite in Q.
Derivative of V

Viz) = |

5% av} [ fl(x)]
Or1 Oz | fo(x)
= [mglsinzq m€2:c2][ 2

—Fxo — Jsin :c1]

ylzs < 0



Pendulum example 144

e Thus the equilibrium point x = [0 0] ' is locally stable.

e To show the asymptotic stability we need LaSalle the-
orem.
e [ he invariant set of state that satisfy

VzvlacgzO

IS xo = 0,2 = 0.
e Since
To = —lajg — gSiﬂ X1,
ml [
sinxq1 = 0 is concluded, and in £2 this is satisfied only by

x1 = 0.



Robot kinematics 145

e Kinematics: The end tip position r of the robot is a
function of joint angle 6.

r = f(0)

e Inverse Kinematics: To find a set of joint angle 8*
that satisfy a specified end tip position r*. Formally it is
written as

0" =f71(r"),

but difficult to find a general solution.



Jacobi matrix 146

e Taylor expansion of f

r* —r = f(0%) —£(0) = IJA0 4+ O((A0)?)
e Iterative solution of inverse kinematics:
AO =T 1" —r)
where J is defined by

of
J = —
00

and called Jacobi matrix.
e Jacobi matrix is a function of joint angle 6.



Robot Kinematics (2 link example) 147

e Endtip Position:

X ¢1cos 0y + ¢>cos(61 + 6>)
y Yy = Elsinel—I—EQSin(@l—l-@Q)

(X, y) e Suppose that the motor driver is ve-
locity control, i.e.,

uyp =01, up=~0o

e Dynamical Equation:

)=( xr = —f1sin 9191
—Losin(01 + 62) (01 + 62)
y = {1 COS (9191

+45 cos(f1 + 02) (01 + 02)



Robot Kinematics (2 link example) 148

Y,
(X, Y) e Dynamical Equation:
r = —Elsinelél
—{5sin(01 + 62) (01 + 05)
y = €1C059191

+45 cos(61 + 02) (01 + 02)

e State Equation:
| —/4 sin 9191 — {5 Siﬂ(@l —|—92) —{5 Siﬂ(@l —+ 92) U1
Y o /1 COS 9191 + /5 COS(91 + 92) 12 COS(91 + 92) U9

e No f(x).
e [ he robot system has kinematic nonlinearity.



Robot Kinematics (2 link example) 149

e Let r = [z,y]' be the output, then the system is de-
scribed by

r = f(0)

where 0 = [91,92]T.
e [ hen we have

r=J(0)u,

where

-0f1  Of1-
. of 0601 00>
=60 and J=—=
" 90 | 0f» 9/
001 005 -
The matrix J is called Jacobi matrix.




Resolved motion rate control

150

e Objective: r(t) — r*(t)
e Derivative relation:

r(t) = J(0(t))6(¢)
e A simple control law:
0(t) = AN HO®W)(r* — (D))
or

0(t) = AIH(O) (" - £(6(1)))
e Resolved Motion Rate Control (Whitney, 1969)



Stability check (RMRC) 151

e Stability at 0 = 6*
e System

i(t) = J(8(1)0(t)

e Control law

0(t) = A1) (r* — (1))

e Closed loop dynamics

(1) = AJ(O()IH(O®)(r* —r (1)) = A(r* — (1))

o Let e(t) =r(t) —r* then we have
e(t) = —Xe(t)

e(t) = e(0) exp(—At)



Fixed gain control law 152

e In RMRC, J(0(t)) and its inverse have to be computed
in realtime.
e Instead, fixed gain matrix J* = J(0*) can also be used.

0(t) = \J* 1" —r(1))



Stability check (Fixed gain) 153

e Closed loop system

(1) = MO T 1* — r(t))

e Equilibrium point: When 6 = 6", r = r* and r = 0.
Thus @ = 8" is an equilibrium point.

e Lyvapnov function candidate:
V() = @ —1@®) ' @¢* — (b))
e Derivative along the trajectory

V() = =20 —r(1)) "t (®)



Stability check (Fixed gain) 154

e [ hus we have

V(t) = —2A(* — () T I(O))T* (" - r(®))

e At the equilibrium point 8 = @*, since r = r*. Thus we
have V = 0.
e Also in the neighborhood of the equilibrium point,

JOIT a3yl =1

and thus we have V < 0.
e The region in which V < 0 holds is not explicitly given.



Efficient second-order minimization 155

e Let J =J(0(t)) and compute

Jesm — (J —|—J*)/2

in realtime.
e Control law

0(t) = Megm(r* — (1))

e Since Jesm = J* at the equilibrium point, the local sta-
bility property is the same as RMRC.

e T his is efficient because Jesm approximate the Taylor ex-
pansion of r to the second order.

r* —r = JesmAO + O((A0)3)



Two link robot 156

0,

&

e Endtip position

v

1151 + 12512

where C1 = cosfq,S1 = sinf1,C1o> = cos(01 + 05),S1o =
sin(61 + 0>)

b — [ 11071 + 12C12 ]



Jacobi matrix 157

e Jacobi matrix

_oOr | =151 = 12512 —12S12

T 90 | 1C1+1xC1o 12010

e Suppose that the link lengths are [{ = [, = 1 and the
desired tip positionisz =1,y = 1.

e [ here are two configurations that achieves this position.

Here we assume that it is 1 = 0,0, = 7/2.
e [ hen the Jacobi matrix at the desired position is

L[ -1 -1
Ay

e Initial position is 8 = [0 0.1]'.

J



Simulations: RMRC 158




Simulations: Fixed gain 159
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Simulations: ESM 160

0.8 -

0.6 -




161

Vector flow
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Vector flow along the end tip trajectory
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Resolved motion acceleration control 163

e Previous examples neglected the robot dynamics
e In general robot dynamics is given by

M(H)é - C(Q, 0)+GO) =1
where M is inertia matrix, C is centrifugal and Coriolis
force, and G is gravity force.
e Let the estimation of these parameters be M, C, G, re-
spectively.
e Control law:
T = M(H)v -+ C(O, 0) + G(H)
where
v=20"4+ (0" —0)+1(6"-0)

and A1, Ao are feedback gains.



Resolved motion acceleration control 164

e If the estimations are exact, we have following closed
loop dynamics

6+ e+e=0 e=0"—0

which is asymptotically stable.

e However it is not easy to obtain good estimations. If the
parameter estimations are not correct, then the dynamics
are not well canceled and the performance is deteriorated.

e [ his control law requires a lot of computations. Paral-
lel algorithms and high speed approximations have been
proposed.
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3D visual servo

2D visual servo

2.5D visual servo

Sampling time issues

ESM algorithm and visual tracking



3D visual servo

167

e History

e EXpression of rotation

e EXxpression of angular velocity
e Position-based visual servo I
e Position-based visual servo II



3D visual servo

168

e History

e EXpression of rotation

e EXxpression of angular velocity
e Position-based visual servo I
e Position-based visual servo II



Static visual servo, 1960-1975 169

Trajectory Robot Task
Task —» : —> — Robot [——> _
Planning Controller I Execution
r i '
I
: Joint Servo |
I
I
| _| Feature ] Feature | {~amera <_J|
Interpretation Extraction

Look and move

Dashed line 0.1cycle/sec

Only applicable to static object
Position recognition for simple object



Position-based visual servo, 1975-1985 170

+
Ref_er_ence ’Q . Robot Robot >Task |
Position Controller Execution
Joint Servo
|_|Feature e Feature_ ! Camera |«
| nterpretation Extraction

LLooking while moving

Position recognition is done in realtime

Special hardware for image processing is necessary
Robust and fast position recognition is the key



Position-based visual servo, 1985- 171

+
Ref_er_ence ’Q . Robot Robot >Task |
Position Controller Execution
Joint Servo
|_|Feature e Feature_ ! Camera |«
| nterpretation Extraction

e Due to quick development of hardware, realtime image
processing is available with CPU, GPU, multi-core...

e Realtime stereo is also possible

e In this section, position estimation is described



3D visual servo

172

e History

e EXpression of rotation

e EXxpression of angular velocity
e Position-based visual servo I
e Position-based visual servo II



Expression of rotation 173

e q is a vector obtained by rotating
p with rotation matrix R.

q=Rp

e [ he rotation matrix is equivalent
P q to a rotation of 6 around the unit
vector u.

i e Find the relationship between R
and (6,u).




Rodrigues formula

174

Consider a circular disk orthog-
onal to u and contains points p
and q.

Let w be the vector in the disk
which is the projection of p onto
the disk plane.

Let v be the vector perpendicular
to w in the disk.

Then we have

q = au + sin v + cos 6w

where

W=Pp—ou, V=ZUAW



Rodrigues formula 175

e Substituting w into right hand
side of q yields

q = au-+ sinfv + cosow
' p—w-4sinfd(uAp) -+ cosbw
= p+sinf(unp)+ (cosfd —1)w
e Moreover
p q
w=-—-uAv=—-uA (uAp)
u} e Thus we have

q = p-+sinf(uAnp)
+ (1 —cosf)uA (uAp)




Rodrigues formula 176

e Let us introduce a skew symmet-

ric matrix

0 — Uy Uy |
[u]/\ = U~z O —Ugx
_—’u,y Uy O A
v e Since
q = p—|—S|n9(U/\p)
D q + (1 —cos®)unA (uAp)
we have
UA
q = Rp,
R = I+sinfuls + (1 — cosh)[u]Z

e Rodrigues rotation formula



From rotation matrix to (6,u) 177

e Since u is a unit vector,

'u% —1 Uz Uy UgpUy |
2 __
[u]a = | uguy ug —1  uyuy
| UgpUs Uy Uz ug — 1

e Take a trace of bothe hands of Rodrigues formula
traceR =3+ (1 — cose)(ug + ug + ug —3)=1-—-2cos¥
e T hus we have an equation for 6:
6 = arccos (%(rll + ro0 +1r33 — 1))
e On the other hand, since sinf = fsincd,

R-R' = 2sin0([u]p) = 2sinc(8[u]p)



From rotation matrix to (6,u)

178

0.8

04

02

-0.2

Picking up the off-diagonal
elements of

R—R' = 2sinchd(A[u]x)

yields
S
, 1 1 32 23
uv = —— 13 — T
2sinch 13 31
| 721 — T12

This equation is singular
only at 6 = 4. In this case
u can be found as an eigen-
vector of R associated to
the eigenvalue 1.



3D visual servo
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e History

e EXpression of rotation

e EXxpression of angular velocity
e Position-based visual servo I
e Position-based visual servo II



Angular velocity and rotation axis-angle 180

e \When a vector x rotates with angular velocity w, the
velocity of the vector x is

X =wAX=[w] X
e Let the column vectors of R be rg,ry,r,, we have
R — [rx ry rz], rx — [W]/\rx, ry — [W]/\ry, rz — [W]/\rz
e [ hus we have

e And also we have

[w]a = RR'



Angular velocity and rotation axis-angle 181

e Derivative and transpose of Rodrigues formula

R = 6cosfu], +sinfu],
+ @sinO[u]x + (1 — cos ) [i] [u] A
+ (1 — cos0)[u] A [u] A

R' = I-sinf[u],+ (1 —cos6)[u]?

e Note that

[U—]?\ — _[u]/\7 [u]/\[fl]/\[u]/\ =0

then we have

(W], = sin@lu], + 0[u]
+ (1 —cosO)[u][a], — (1 —cosb)[a][u] 5



Angular velocity and rotation axis-angle

182

e Moreover, since

ulplvly = vul — (@@L

WA[VIp = VIp[ul, = va' —uv' = [[u],v],
we have

[w], = sin@[u] , + 0[u] , + (1 — cosO)[[u] \u] ,

e By comparing both sides we have

w=0u+ (sinfI 4+ (1 — cosh)[u] ,)u



Angular velocity and rotation axis-angle

183

e Derivative of fu:
d(6u)
dt
e Multiply I 4 [u]? to both sides

= fu + Ou

d(@u)

fu = I+ [u]?)

e And multiply —[u]A to both sides

>d(fu)
N dt

= —[u]




Angular velocity and rotation axis-angle 184

e On the other hand, since
62 0
1 — cosf® = —sinc? (—) , Sinf@ =460sinco
2 2
we have
. , 0 . ~/0 .
w = 60u+ (suanI -+ Esmc (5) [u]/\> ou
e Finally

w=(1+ %sian (g) [ul , + (1 — sinc 6)[u]? ) d(gtu)

e By computing the inverse of the matrix on the right hand
side, we have

d(6u) 0 sinch 5
@ e JGUZI‘Q[‘””(“ Cze)[un




Position-based control

185

From the image output m, compute the controlled value
s. And compare s with the desired value s*. Derive the
input v so that s converges to s*.

In position-based visual servo, s is selected as a 3D pa-
rameter.

The controlled error is

e(t) =s(m((t),v(t),a) —s*

where a includes all parameters such as intrinsic and ex-
trinsic parameters of the camera, object shape and size.



3D visual servo

186

e History

e EXpression of rotation

e EXxpression of angular velocity
e Position-based visual servo I
e Position-based visual servo II



Position-based control 187

e

e For example, a camera is mounted on the robot hand and
we want to control the camera position and orientation
c to the desired position and orientation c*.

e Note that the relationship between the object and the
camera is not explicitly controlled. Only the relationship
between ¢ and c¢* is important.



Position-based control 138

Object

‘R, “to

S k
“ Ry, € to
Current
Camera
Desired
Camera

e Homography-based algorithm can be used to find R, t.
e Object - camera: ‘t,
e Object - desired camera: €t,



Control law 189

e Controlled variables:

s _ | %o « | “to
e=s—s, S_leu]’ s’ = 0

e Control input:



Control law 190

e Relationship between them:

dto — _C,, _cC c+ — _C & &
dt — VC wC /\ to —_ VC + [ to]/\ wC
d(6u) Tow  Ja =T H[U] + (1 sincé ]
dt ou fu — > A SinCQ% A

e [ hus we have



Control law 191

e [ he control law

“to — C*to + [Cto]/\eu

N
v=-\J “e A o

e [ he closed loop system

e= —Je, e(t)=ec Meg

Jgy becomes singular at 0 = +27.

Near the origin 6 =0, Jyy = 1.

The system well behaves for practically important region.
T he stability region is almost global.

This control law do not care how the image will change.
Indeed, no guarantee to keep the object in the field of
view.
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TOc_O

TOc_x

-0.46742
0.49873
0.72992

0
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Camera trajectory




Feature points trajectory 194

100

200

300

400

500

600

700 1 1 1 1 1 1 1 1 1
-300 -200 -100 0 100 200 300 400 500



Trajectory error
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err
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3D visual servo

196

e History

e EXpression of rotation

e EXxpression of angular velocity
e Position-based visual servo I
e Position-based visual servo II



Position-based control: Another choice 127

Current

\\Ca mera Desired

24 Camﬁ/

C\A\ . . .- E
C C |
RC, tC

e Controlled variable: Relative position expressed in the
desired coordinate system.

* * *

sk
t=tc=c*—°c, R=°R.
e EXpress orientation error using 6u

t

* __
ou | s =20

e=s—s", s=




Control law 198

e Control input:

e Relationship between input and controlled variables

dt d x :
= . (-“Rec) = —Rc—R%
= [w] R =R (=%Ve — [wc]\c) = Rve

e [ hus we have

S | R O | Cve
e =s=Jv, J_[O Jeu]’ v_[ ]



Control law 199

e Control law

-
v=-AJle=_)| BT
6u
e Closed loop system
e= —Je, e(t)=ec Meg

Jgy becomes singular at 0 = +27.

Near the origin 6§ =0, Jgy = 1.

The system well behaves for practically important region.
T he stability region is almost global.

This control law do not care how the image will change.
Indeed, no guarantee to keep the object in the field of
view.



Simulation
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TOc_O

TOc_x

-0.46742
0.49873
0.72992

0

O O O +—

0.67153
0.73729
-0.073743
0

-0.57495
0.455b7
-0.67954
0

©O O +» O

1.6598
-1.09
1.9059
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Camera trajectory




Feature points trajectory 202
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Trajectory error
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err
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3D visual servo

2D visual servo

2.5D visual servo

Sampling time issues

ESM algorithm and visual tracking



2D visual servo

205

e Features and formulation
e Image Jacobi matrix

e Control law

e Undesired motion

e Simulation



2D visual servo

206

e Features and formulation
e Image Jacobi matrix

e Control law

e Undesired motion

e Simulation



Image features 207

object image

points

edge length
centroid

e Image features: easy to extract, must change if camera
position changes, number of features must be larger than
the number of robot DOF



Visual servo

208

Image output: m

Controlled variables: s

Desired value: s*

Control input: v

Design a controller so that: s — s*



Feature-based visual servo formulation 207

e Controlled variables s as image features
e Desired value s* as desired value of image features
e Find v so that

e(t) =s(m(t),v(t),a) —s*

IS minimized. Here a includes intrinsic and extrinsic pa-
rameters of the camera.



Feature-based visual servo formulation 210

+
Reference Interpreter Robot 5 13K
Feature & Controller Execution
Feaure | | camera  |e—

Extraction

e [ his scheme does not require complicated object pose
estimation.

e Parameters on the object shape and size are not required.
e Desired features are generated by teach-by-showing.



2D visual servo

211

e Features and formulation
e Image Jacobi matrix

e Control law

e Undesired motion

e Simulation



Image Jacobi matrix 212

e Use points image as features.
e Point coordinate in 3D
p=[XY 7]
e [ he feature coordinate is
x=[zy] =[x/ZYv/2]"

e Control input: robot hand position and orientation q
e Image Jacobi matrix:

_0x

J, = =
X aq



Image Jacobi matrix

213

e Input velocity: v=q

e Output velocity: x

e Image Jacobi matrix: x = Jxv
e Derivative of x




Image Jacobi matrix 214

e Point velocity due to camera motion
p = — V¢ — We¢ N\ P
e Elements of velocity and angular velocity
Ve = ['U;C ’Uy 'Uz]—r, We = [CL);C CUy Wz]—r

e [ hen we have

Y = —’Uy — (,UZX _I_ (UmZ

e Substituting these equations into image velocity

—vg/Z + xvy/Z + xywe — (1 + :UQ)wy + yw,
—vy/Z +yv./Z + (1 + y2)wm — TYWy — TWwy



Image Jacobi matrix

215

e In summary we have

X = :!Xv
J. — -1/Z2 0 z/Z =xy
T 0 —1/Z y/Z 1442
v = | V¢

We

where Z is the depth.

—(1 + 22)

e Stacking this relationship for n points yields

e=s—s,

S =

X1
X2

B b S
1
X2

*
_Xn

Y
—Z



2D visual servo
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e Features and formulation
e Image Jacobi matrix

e Control law

e Undesired motion

e Simulation



System description 217

e System description
e =Jv

where
_ T, _
J = Jx

L JXn i
IS called the image Jacobi matrix.
e Number of features n should be equal to or larger than

the robot DOF m. In this case the image Jacobi matrix
J € R"*™M phecomes tall.



Control law 218

e A control law is given by

v=-XTe, JT=0"D I, e=s—s* v= [ ZC ]
C

e In this case the error dynamics becomes
e=Jv=-XJJ'H11e
e Note that
JO'H I £1

SO it requires more discussion.



2D visual servo
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e Features and formulation
e Image Jacobi matrix

e Control law

e Undesired motion

e Simulation



Undesired motion 220

A
Initial Image o
. ® -
LA ~ >
o & 9
Goal Image

e Suppose that initial and desired features are at 180 de-
gree rotated around the image center.
e Consider a control law

v=-X\T(s —s*)



Undesired motion 221

A
Initial Image P
. ® -
0 ~ >
o & h?
Goal Image

e [ his control law vields a motion that the feature points
move straightly to the desired points.

e [hen the object image becomes infinitely small at the
image center.

e [ his means that the camera moves infinitely far away
from the object.



2D visual servo

222

e Features and formulation
e Image Jacobi matrix

e Control law

e Undesired motion

e Simulation



Selection of control gain matrix

223

e (Generalized inverse
v=-XJ(0)(s —s"
e Fixed gain
vV=-A J*T(s — ™)

where J* = J(0%)
e ESM

v =—X Jesm'(0)(s — s*)
where

Jesm(e) — (J(H) + J*)/Q



Simulation
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TOc_O

TOc_x

-0.46742
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0.72992

0

O O O +—

0.67153
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-0.57495
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0
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Generalized inverse: Feature trajectory 22°
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300
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err
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Fixed gain: Camera trajectory 2

BN T .

@//// Z\L;L.I\L\_



Fixed gain: Feature trajectory 229

-100
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100 r
200

300

400 + \
500 )

600 | | | | | | | | | |
-200 =100 0 100 200 300 400 500 600 700




230
Fixed gain: Feature error
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ESM: Feature trajectory 232
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ESM: Feature error 233
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Simulation for symmetric case

TOc_O =

-1.5

TOc_x =

-1.5



Generalized inverse: Camera trajectory 23°




Generalized inverse: Feature trajectory 23°
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Generalized inverse: Feature error 2371
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Fixed gain: Camera trajectory 238




Fixed gain: Feature trajectory 239
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Fixed gain: Feature error
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0.2] ‘a—




ESM: Feature trajectory 242
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ESM: Feature error
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Why fixed gain does not work properly 244

e 135 degree rotation
e JT law causes solid arrow flow

v=-)J(s—s"
e Swap initial and desired

v=—\JT(s" —s)

then this control law generates
the same solid arrow flow at s*

e The J*T law cause the inverse
of solid arrow flow as indicated
by the dotted arrow

v=—\JT(s—s%



Why ESM work nicely 245

e 135 degree rotation
e ESM law

v=—X Jesm'(0)(s — s*)

where

Jesm(0) = (J(0) +J%)/2

e ESM is the average of JI and
J*T and thus generates bold ar-
row flow.
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3D visual servo

2D visual servo

2.5D visual servo

Sampling time issues

ESM algorithm and visual tracking



Hybrid visual servo

247

Position-based schemes have good 3D property but can-
not control the image variables — easy to loose the tar-
get.

Feature-based schemes have good robustness and good
image trajectory as well as low computational cost. How-
ever the stability is local and we may have undesired mo-
tion.

Hybrid schemes are developed to have both goodness.



Hybrid visual servo 248

e 2-1/2D visual servo
e Deguchi
e Corke and Hutchinson
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e 2-1/2D visual servo
e Deguchi
e Corke and Hutchinson



2-1/2D visual servo

250

e Control one feature point by feature-based visual servo

e Control other DOF using position-based visual servo
e Other DOF = Depth py = Z/Z* & Orientation 6u

e=s—s, §s=

XL

(]
log Z

6u

e T he third element is e, =109 py
e Note that Au is obtained by Homography and

pz = det(H)

n*Tm*

nTm

CU*

*

Y
log Z*
0




2-1/2D visual servo 251

e Controlled feature point: x = [z y] '
e Derivative relations

X = qxv
J. — —-1/Z 0 x/Z Y —(14+22) vy
T 0 ~1/7Z y/Z 142 —xy —x
v = Vc]
We
d 1
£|OQZ=—=E[O O -1 —y =« O}V




2-1/2D visual servo 252

e In summary, we have

where
1 —1 O T
J’U — " 0 —1 Yy ;
Z*pz | 0 0o -1
2y —(1422%) vy
Jo = | 1447 —TY —x
LY x 0O |

e Control law
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2-1/2D hybrid: Feature trajectory
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2-1/2D hybrid: Feature error 256
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2-1/2D hybrid: Feature trajectory 258
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2-1/2D hybrid: Feature error 259
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2-1/2D hybrid: Feature trajectory 201
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2-1/2D hybrid: Feature error 262

300

200 r

100

err

-100 r

-200

-300 |

-400



2-1/2D hybrid: Camera trajectory 263




2-1/2D hybrid: Feature trajectory
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Simulation for symmetric case

TOc_O =

-1.5

TOc_x =

-1.5



2-1/2D hybrid: Camera trajectory 267




2-1/2D hybrid: Feature trajectory 263
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2-1/2D hybrid: Feature error 269
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Hybrid visual servo 270

e 2-1/2D visual servo
e Deguchi
e Corke and Hutchinson



Deguchi 2rl

e Let the translation error vector be
. t

€y = d* RT_

d

then this can be computed using Homography estimation.
e [ranslation error e, and angular error e

. ey
s=|Jy Ju | [ew]
e Solving this equation for e, yields

where s should be replaced by s — s*.
e [ hus, control law becomes

—
S70%)



Deguchi: Camera trajectory 272




Deguchi: Feature trajectory
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Deguchi: Feature error
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Deguchi symmetric: Camera trajectory 27°
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Deguchi symmetric: Feature trajectory 27

50 | . e
100 | .jigﬁ ‘H{h.
150 | '
200 |
. 250 . N
300 |
350 |
400 |

450 e e

500 ¢

0 100 200 300 400 500



Deguchi symmetric: Feature error 217
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Hybrid visual servo 278

e 2-1/2D visual servo
e Deguchi
e Corke and Hutchinson



Corke and Hutchinson

279

e [0 control the depth direc-

tion use the area o insde
feature points (area of re-
gion bounded by feature
points).

ez = —yr(oc—0o")

Rotation around Z axis
Is controlled by the an-
gle 6 between a line seg-
ment connecting two fea-
ture points and image hor-
izontal axis.



Corke and Hutchinson 280

e [ he velocity along Z axis and angular velocity along Z
axis of the camera are

Uz — [Vz wz]T
e [ he velocities for other DOF are

e Feature velocity is

s = nyuxy + J.u;

where Jzy is the 1, 2, 4, 5-th column and J, is the 3,
6-th column of the image Jacobi matrix .



Corke and Hutchinson 2381

e Define the camera velocity concerning Z axis be

then we have the velocity for the other DOF as

where s should be replaced by s — s*.



PKSH: Camera trajectory 282

e @S.?r’. .




PKSH: Feature trajectory 283
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PKSH: Feature error 284
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PKSH symmetric: Camera trajectory 285




PKSH symmetric: Feature trajectory 286
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PKSH symmetric: Feature error 287
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Menu: Course 11 238

e 3D visual servo

e 2D visual servo

e 2.5D visual servo

e ESM algorithm and visual tracking



ESM visual tracking 289

e Image brightness map and warp
e Template matching

e Lucas and Kanade algorithm

e ESM algorithm



ESM visual tracking 290

e Image brightness map and warp
e Template matching

e Lucas and Kanade algorithm

e ESM algorithm



Image brightness map 291

Brightness pattern of a region
Image coordinate: x = [z y 1]
Brightness of this point: I(x)
Brightness map

y=[I(x1) I(xp) -+ I(xg)]"
e Note that z,y may not be integers.



Warp 292

e Warp: How to clip a subregion from brightness map

x' = w(x; p)



Translation warp 293

P1

P

I*

e Warp parametrization: p = [p1,p>2] "

woim = | 1




Translation and rotation warp 294

e Translation pi,po
e Rotatioin p3

.y _ | cos(pz) —sin(p3) || =] [p1

wiop) = | sin(p3) cos(p3) || v __+__ P2
_ [ cos(pz) —sin(p3) p1 ]|
sin(p3)  cos(p3) b2 || ]

e Obviously the warped coordinates x’ = w(x;p) are not
integer.



Affine warp

295

e Warp parameters p = [pq, ..

w(x; p)

pP5

/1

14 pg
p2

., pel |

(1 + p1)z + p3y + ps
por + (1 +pa)y + ps

pP3 D5
14+ ps pe

_= <




Homography warp 296

L

e Homography is used for planer objects

sx = Gx*

o Let g;; be the (4,7) element of G and g3z = 1.



Homography warp

297

e [ hen we have

s = g31x"

and

x = w(Gx*) =

e Warp parameters p = [pq, ..

w(x;p) =

+ g3y + 1

[ 9112 +912Y 4913

9317*+g32y*+1
921 +920y*+933

9317*+g32y*+1
1

gl !
[ p1x+poy+p3 |
prz+psy—+1

PaT+psy—+pe
prz+pgy—+1

1




ESM visual tracking 298

e Image brightness map and warp
e Template matching

e Lucas and Kanade algorithm

e ESM algorithm



Template matching 299

e [Template image brightness map
=i 5 - 1]’

e Template matching: Find p such that

S [I(w(x;p)) — I*]* — min
xeT



Template matching as visual servo 300

e Suppose

[[(w(x1;p)) I(w(x2;p)) - I(w(xg;p))]'

s(p)
=0 gl

S

e [Template matching is visual servo in which the error func-
tion is defined by

e=s(p) —s"



2D

template matching example

301
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ESM visual tracking

302

e Image brightness map and warp
e Template matching
e Lucas and Kanade algorithm
— Compositional
— Inverse compositional
e ESM algorithm



Lucas-Kanade algorithm formulation 303

e Suppse we have a estimation of p and we want to update
the parameter by computing Ap by minimizing the cost
function

S [I(w(x;p+ Ap)) — I*(x)]>

xeT
e In other words, suppose that we have p and want to find
Ap that minimize

lell = |ls(p + Ap) —s7|
and updete the parameter by

p«<p+ Ap

e An iteretion will stop when ||Ap|| < e.



Lucas-Kanade algorithm derivation 304

e Taylor expansion of I(w(x;p+ Ap)) at Ap=20

I(w(x;p+ Ap)) = I(w(x; p)) + VIZ—";Ap

e In other words

s(p+ Ap) =s(p) +J(p)ApP

where
VI
VI OW
Jp) = Ji(p)Iw=1| "7 .
' P
| Vg |
VI
VI OW
JI(p) — . 2 ’ JW — 8—
' p
| Vg |




Lucas-Kanade algorithm derivation 305

e In this equation

> 5
0 9y ||y (x;:p)

is the gradient of I evaluated at the warped point w(x; p).
e While

Vi = Vilsp) = !

[ OQwgy Owg .. Owg ]
ow _ Op1  Op> Opn
op | Owy Owy = Owy

| Op1  Opo Opn |

where

N | we(x;p)



Lucas-Kanade algorithm derivation 306

e [ he cost function to be minimized

Is(p) + J(p)Ap —s™|
e Nonlinear minimization

Ap =-S~1I'(p) (s(p) — s

where
— SDM
S =1
— GNM
S=1J"(p)J(p)
— LMM

S=1J'(p)J(p) ++D



ESM visual tracking

307

e Image brightness map and warp
e Template matching
e Lucas and Kanade algorithm
— Additional
— Inverse compositional
e ESM algorithm



Lucas-Kanade compositional algorithm 308

e Compositional warp

I(w(w(x; Ap);p)) — I"(x)

e Warp update with warp increment: w(x; Ap)

w(x; p) — w(x; p) o w(x; Ap) = w(w(x; Ap); p)



Compositional warp: translation 309

e Translation warp

o | _ _ | z+p1+ Apy
w(x;p') =w(x;p) ow(x; Ap) = [y—l—pz—l‘APQ

e \Warp parameters

p1 + Ap;
po + Apo

P
5




Compositional warp: Affine

310

e Affine warp

w(x;p') = w(x;p) o w(x; Ap)
1+ Ap;y

14+ py

p2
O

1+ p)
2
0

p3 Ps5
1+ psa ps
0 1
p3  Ps
14, pg
0 1

e \Warp parameters

TLRVRN B

ks

x
Y
1

Aps

0

p1 + Ap1 +p1Ap1 + p3Qpo
p2 + Apy + ppApy + paApo
p3 + Ap3z + p1Ap3 + p3Apg
P4 + Apg + poAp3 + paApg
ps + Aps + p1Aps + p3Ape
pe + Ape + p2Aps + p4Ape

Apz  Aps |
1+ Aps Apg
0 1|

R 8




Compositional warp: Homography 311

e HOomography warp

W(Xipl) = w(x;p)ow(x; Ap)
= w(Gw(AGx))
(_ [ Apiz+Apoy+Aps \
P1 P2 P3 AAPYi‘ZApgi—Zl
= par+Apsy+Ap
Wl P4 P56 AprotApsyTl
\_p7 p8 1 | 1 )
- pia+phy+ph |
prr+pgy+1
= | phax+py+og
prr+pgy+1
1




Compositional warp: Homography 312

e \Warp parameters

P} p1Ap1 + poAps + p3Apy

P5 p1Qpo + prAps + p3Apg

P3 p1Ap3 + p2Aps + p3

Py | _ 1| palp1+ psAps+ psApy

Ps q | PaQpr+ psAps + psApg |’

P6 paAp3 + psApe + Pe

Py p7rAp1 + pgsQAps + Apy
g | p7Apz + pgAps + Apg

g = p7Ap3z+pgAps+1

e Composition

w(x;p) = w(Gw(AGx)) = w((GAG)X)



Lucas-Kanade compositional algorithm 313

e [ he cost function to be minimized

S [I(w(x;p+ Ap)) — I*(x)]>

xeT
e Taylor expansion around Ap =0

I(w(w(x;0): p)) + VI(W)Z—V;Ap ()

where I(w) = I(w(x;p)) is the warped image and VI(w)
is the gradient of warped image.
e Note that w(x;0) is unit warp

w(x;0) =x



Lucas-Kanade compositional algorithm 314

e [ hus we have
OW .
I(w(x;p)) + VI(W)%AP — I*(x)
o Let

e =s(p) +J(p)Ap —s"

e [ hen the parameter updete is given by

Ap = -S~1I'(p) (s(p) —s%)

where
O -
VI, | OW
Iy =| 2|55 Vik= VI p)
_ VIC] i




Lucas-Kanade compositional algorithm 315

e Difference between additional and compositional algo-
rithms
1. Gradient:
— Additional: Gradient of input image evaluated at
warp position
— Compositional: Gradient of warp image
2. Jacobi matrix

— Additional: %—"I;’ is evaluated at (x;p)

— Compositional: %—"I‘)’ is evaluated at (x;0)



ESM visual tracking

316

e Image brightness map and warp
e Template matching
e Lucas and Kanade algorithm
— Additional
— Compositional
— Inverse compositional
e ESM algorithm



Lucas-Kanade inverse compositional 317

Swap the role of input image and template

I*(w(x; Ap)) — I(w(x; p))
Warp update

w(x;p) — w(x;p) ow(x; Ap) !
Taylor expansion of I* at Ap=20

I*(w(x; 0)) + w*g—""Ap — I(w(x; p))
P

Since w(x;0) is unit warp, we have

) + VIO Ap — I(w(x; p))
p

where VI* is gradient of template and constant vector.

Since the Jacobi matrix %—"I;’ IS evaluated at p = 0, the

matrix can be computed before start tracking.



Lucas-Kanade inverse compositional 318

e Based on this discussion, the formulation becomes the
Mminimization of

s* + J*Ap — s(p)

where
e
|9
7= vV 8—W | VI = VI*(xp)
vz | °F p=0
| q

IS a constant matrix.
e [ hen the parameter update is given by

Ap = -S1J*' (s(p) — 57

where S can be selected from SDM, NM, GNM, and
LMM.



Lucas-Kanade compositional algorithm 31°

e Note that J* and S can be computed befor start tracking.
e The warp increment w(x; Ap) should be invertible.



ESM visual tracking 320

e Image brightness map and warp
e Template matching
e Lucas and Kanade algorithm
e ESM algorithm
— Parametrization of homography matrix
— ESM Formulation
— ESM Derivation
— ESM Tracking experiments



Parametrization of homography matrix 321

e Homography matrix G has 9 elements and 1 constraint
e Assume det G = 1 to avoid singularity condition
— Singularity: When det G = 0, the object plane is par-
allel to optical axis.
— For a matrix A with traceA = 0, G = exp(A) satisfies

det G = 0.
e Parametrization: z = [z1,...,2g] "
8
G(z) = exp(A(z)), A(z) =) zA,
i=1

where A; are 8 bases of traceA = 0.



322

Parametrization of homography matrix

e 3 bases of traceA =0

o < < 0
< < <
11 _OOO_

—~ OO0 OO0 O . O OO
coo w00 ° 1 © coo

OO0 OO0 OO OO




ESM visual tracking 323

e Image brightness map and warp
e Template matching
e Lucas and Kanade algorithm
e ESM algorithm
— Parametrization of homography matrix
— ESM Formulation
— ESM Derivation
— ESM Tracking experiments



ESM Formulation 324

e Use compositional warp
e Suppose z is current parameter and Az is parameter up-
date, then

I(ww(x; Az);z)) — I'"(x)
and warp update is
w(x;z) — w(x;z)ow(x; Az) = w(w(x; Az);z)
e Taylor expansion of I at Az = 0 is given by
I(w(w(x:0):z)) + VI(W)Z—WAZ _I'(x)
Z

e Since w(x;0) is unit warp, we have

I(w(x;z)) + VI(W)Z—‘;VAZ — I'" (%)



ESM Formulation 325

o [(w) =I(w(x;2))
e VI(w) is gradient of warped image
o Let

s(z)

S

[T(w(x1;2)) I(w(xz;z)) -+ I(w(xq2)]'
[T*(x1) T'(x2) -+ I'(x)]'

then the function to be minimized is

e =s(z) —s*



ESM visual tracking 326

e Image brightness map and warp

e Template matching

e Lucas and Kanade algorithm

e ESM algorithm
— Parametrization of homography matrix
— ESM Formulation

— ESM Tracking experiments



ESM Derivation 327

e ESM method use Jacobi matrices at current and desired
points.
e Current Jacobi matrix is

VI
VI ow 0
Iz) = J@Iwlg=| " 2|22,
= 0g 0z
| Vg |
RV
I(Z) : ? W 8g7 G o7
| Vg |




Detail of Jacobi matrix 328

e Image gradient

Vi, =VI(w(Xg;p))
e \Warp
911" + 912y + 913
g312* + g32y* + 933
w(Gx*) = | 921" + g22y™ + 923
g312* + g32y* + 933
1

e Second Jacobi matrix

O 0 0 —wx™ —uwy®™ —u
z* y* 1 —vx* —vy* —v
0

_QB* y*
JW: 0 O
0 O O O 0 0 0

oOooRr




Detail of Jacobi matrix 329

e [ hird Jacobi matrix

Je = [A1], [A2], - [Ag], ]

where [A;], is a vector composed of elements of A;.



Jacobi matrix at desired state 330

e When z reaches the desired state z* then the image
I(w(x;z*)) becomes I*(x).
e [ hen the Jacobi matrix is

oo
| ow| 8
J=Jpdndn = | V2 | 2V o8
= 0g |« 0z
*
VI |

where J« is the Jacobi matrix of the template image and

I, =Jw, Ji=1Jg



Jacobi matrix at desired state 331

e ESM
Az = —Jlsm (s(z) —s%)
%(J(z) +J%) = %(JI(Z) + Jr)Jwlg

Jesm



ESM visual tracking 332

e Image brightness map and warp
e Template matching
e Lucas and Kanade algorithm
e ESM algorithm
— Parametrization of homography matrix
— ESM Formulation
— ESM Derivation
— ESM Tracking experiments



ESM experimental results - rotation
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ESM experimental results - rubber
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