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Menu: Course I 1

• Basic mathematical tools for control and image process-

ing

• Tools for visual servo: cameras and software

• Image processing basics

• Nonlinear control and robot control

• Basic visual servo



Menu: Course II 2

• 3D visual servo

• 2D visual servo

• 2.5D visual servo

• Sampling time issues

• ESM algorithm and visual tracking



Menu: Course I 3

• Basic mathematical tools for control and image process-

ing

• Tools for visual servo: cameras and software

• Image processing basics

• Nonlinear control and robot control

• Basic visual servo



Vector elements 4

• Vector: direction and length

• Vector length: norm

• Example

v =

[

v1

v2

]

– Elements: v1, v2? x1

x2

y1 y2

v



Coordinate system 5

• Vector elements should be asso-

ciated to a coordinate system

• In Σ1 = (x1, y1)

1v =

[

3.6

5

]

• In Σ2 = (x2, y2)

2v =

[

2

4

]

• The left upper-script shows the

coordinate system in which the

elements are expressed

x1

x2

y1 y2

v



Coordinate transformation I 6

• Matrix 1R2 is called coordinate

transformation matrix.

1v = 1R2
2v,

1v =

[

3.6

5

]

, 2v =

[

2

4

]

• How to compute 1R2 ?
x1

x2

y1 y2

v



Coordinate transformation II 7

• Bases of Σ2: x2, y2

• These vectors have expressions

in Σ1 as follows

1x2 =

[

1.2

0.3

]

, 1y2 =

[

0.3

1.1

]

• Recall

1v =

[

3.6

5

]

, 2v =

[

2

4

]

x1

x2

y1 y2

v



Coordinate transformation III 8

• Express v in Σ1

1v = 21x2 + 41y2

= 2

[

1.2

0.3

]

+ 4

[

0.3

1.1

]

=

[

1.2 0.3

0.3 1.1

] [

2

4

]

[

3.6

5

]

=

[

1.2 0.3

0.3 1.1

] [

2

4

]

1v = 1R2
2v

• Thus we have

1R2 = [ 1x2
1y2 ]

x1

x2

y1 y2

v



Vector norm, Distance of vectors 9

• For a vector v = [v1 v2 · · · vn]⊤, the norm is given by

‖v‖ =
√

v2
1 + v2

2 + · · ·+ v2
n =

√

v⊤v

• The distance d between two vectors u and v is

d(u, v) = ‖u− v‖



Image and Kernel 10

• Consider an m × n real matrix M ∈ R
m×n, where m ≥ n.

(Square or Tall matrix)

• Suppose that M is composed of m column vectors mi:

M = [m1 m2 · · · mn ]

• When we have

y = Mx, x ∈ R
n, y ∈ R

m

then the following equation holds

y = x1m1 + x2m2 + · · ·+ xnmn

where x = [x1, x2, · · · , xn]⊤.



Image and Kernel II 11

y = x1m1 + x2m2 + · · ·+ xnmn

• y is a linear combination of mi.

• By changing x ∈ Rn, y moves in a space spanned by mi.

• This space is called the image of M and denoted by

ImM.

ImM = {y : y = Mx ∀x ∈ R
n}

• Suppose that we have y = 0 for some x = xi.

• The space spanned by these vectors are called kernel of

M and denoted by KerM.

KerM = {x : Mx = 0} = {x : m⊤i x = 0, i = 1, . . . , n}



Rank of a matrix (full rank) 12

• Suppose that all column vectors are linear independent,

i.e., suppose that if

a1m1 + a2m2 + · · ·+ anmn = 0

then we have only one solution

a1 = a2 = · · · = an = 0.

In this case the rank of M is n and the matrix is called

full rank.



Rank of a matrix 13

• If the matrix is not full rank then select n − 1 vectors

from mi and check whether they are linear independent

or not.

• If the maximum number of linear independent vectors is

r then the rank of M is r and written as

rankM = r



Matrix inverse 14

• If M is square and full rank then it has its inverse M−1.

MM−1 = M−1M = I

• If M is not full rank then it does not have its inverse.



Example 15

• Consider a set of linear equations

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

• Suppose that aij, bi (i, j = 1,2,3) are known and we want

to find xi(i = 1,2,3) to satisfy these equations.

Ax = b

• If A is full rank then the solution is

x = A−1b



Example 16

• If A is not full rank, i.e., if

a1 =







a11

a21

a31






, a2 =







a12

a22

a32






, a3 =







a13

a23

a33







are linear dependent, then how to find the best solution?

• Suppose that a3 = a1 + a2. Then the original equation

can be re-written as follows:

b = x1a1 + x2a2 + x3a3 = (x1 + x3)a1 + (x2 + x3)a2

= [ a1 a2 ]

[

x1 + x3

x2 + x3

]

b = Āx̄ (3 equations but 2 unknowns)



Example 17

• New system

b = Āx̄

• The least square solution of this equation is defined by x̄

that minimizes

J = ‖Āx̄− b‖ = (Āx̄− b)⊤(Āx̄− b)

• It must satisfy

∂J

∂x̄
= 2x̄⊤Ā⊤Ā− 2b⊤Ā = 0

i.e.,

Ā⊤Āx̄− Ā⊤b = 0

and we have

x̄ = (Ā⊤Ā)−1Ā⊤b



Example 18

• How to obtain x from x̄?

• Minimum norm condition (min s):

s = x2
1 + x2

2 + x2
3 = (x̄1 − x3)

2 + (x̄2 − x3)
2 + x2

3

i.e.,

ds

dx3
= −2x̄1 − 2x̄2 + 6x3 = 0, x3 =

1

3
(x̄1 + x̄2)

and we have

x1 =
2

3
x̄1 −

1

3
x̄2, x2 =

2

3
x̄2 −

1

3
x̄1, x3 =

1

3
x̄1 +

1

3
x̄2

• This solution minimizes

‖Ax− b‖ as well as ‖x‖



Generalized Inverse 19

• Linear equation

Mx = y

• If M is tall and full rank, (M⊤M) becomes square and

full rank and there exists (M⊤M)−1.

• The generalized inverse

M† = (M⊤M)−1M⊤

satisfies a solution that minimizes

x = argmin
x

‖Mx− y‖ = M†y

• The matrix also satisfies

MM†M = M, M†MM† = M†



Singular Value Decomposition I 20

• Very important and useful decomposition!

• Given a m× n (m ≥ n) real matrix M ∈ Rm×n.

• Suppose that the rank of M is r (< n).

• SVD

M = UΣV⊤

where

U = [u1 u2 · · · um ] ∈ R
m×m

Σ =























σ1

σ2
. . .

σr
. . .

σn























∈ R
m×n

V⊤ = [v1 v2 · · · vn ]⊤ ∈ R
n×n



Singular Value Decomposition II 21

• SVD

M = UΣV⊤

where

U⊤U = UU⊤ = I, V⊤V = VV⊤ = I,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, σr+1 = · · · = σn = 0

• Singular value: σi (i = 1, . . . , n)



Property of SVD I 22

• M = UΣV⊤

V⊤vi =





























0
...

0

1

0
...

0





























← i, Σ





























0
...

0

1

0
...

0





























=





























0
...

0

σi

0
...

0





























, U





























0
...

0

σi

0
...

0





























= σiui

• Thus

Mvi = UΣV⊤vi = σiui

• Matrix M rotates the unit vector vi by V⊤, and magnify

σi and rotate by U; and we obtain σiui.



Property of SVD II 23

• Since σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

• σ1 and v1 are called maximum singular value and maxi-

mum singular vector, respectively.

• The ratio σ1/σn is called condition number and plays an

important roll in numerical calculation.

v1

v2

V
T Σ

σ2

σ1
U

σ1u1

σ2u2

M



Property of SVD III 24

• Generalized inverse of non-full rank matrix

M† = VΣ−1U⊤

where

Σ−1 =





























σ−1
1

σ−1
2

. . .

σ−1
r

0
.. .

0































Example of SVD I 25

• Problem: Given M ∈ Rm×n (m > n), find x ∈ Rn that

satisfies

Mx = 0 and ‖x‖ = 1

• When rank of M is r (< n), dimension of KerM is n− r.

• The solution should be in KerM.

∀x ∈ KerM, ‖x‖ = 1



Example of SVD I 26

• Singular value decomposition of M:

Mvi = σiui, ‖vi‖ = 1

and σi = 0 (i = r + 1, . . . , n).

• Thus vi (i = r+1, . . . , n) are the vectors that span KerM.

• Solution:

x =
n
∑

i=r+1

αivi where
n
∑

i=r+1

|αi| = 1



Example of SVD II 27

• Problem: Let e = Mx and find the solution that satisfy

‖e‖ = ‖Mx‖ → min and ‖x‖ = 1

• SVD of M and find vi, (i = 1, . . . , n). Then x should be

expressed by

x = x1v1 + · · ·+ xnvn, x2
1 + · · ·+ x2

n = 1

• Then we have

e = Mx = σ1x1u1 + · · ·+ σnxnun



Example of SVD II 28

• Since ui (i = 1, . . . , n) are orthonormal vectors, the norm

of error vector is evaluated by

‖e‖ = (σ1x1)
2 + · · ·+ (σnxn)

2, σ1 ≥ · · ·σn > 0

• To minimize the norm ‖e‖, it should be

x1 = · · · = xn−1 = 0, xn = 1

• Solution: Thus we finally obtain

x = vn

• (Important!) The solution of

‖e‖ = ‖Mx‖ → min, ‖x‖ = 1

is x = vn.



Coordinate system I 29

• Base coordinate system: Σ0

• Object coordinate system: Σa

• Position of the object: pa

• Orientation of the object: R = [xa ya za ]

Object

Σa

0Σ

pa

ph

xa
ya

z a

x0

y0
z 0



Coordinate system II 30

• A point on the object is given by a constant vector ph

Object

Σa

0Σ

pa

ph

xa
ya

z a

x0

y0
z 0



Coordinate system II 31

• Point vector in Σa: ph = [xh, yh, zh]
⊤

• In Σa system:

ph =







xh

yh

zh





 = xh







1

0

0





+ yh







0

1

0





+ zh







0

0

1







• In Σ0 system:

0ph = xhxa + yhya + zhza

= [xa ya za ]







xh

yh

zh







= Rph = 0Ra
aph



2 Link robot I 32

• In Σ1, tip of link 1

1p2 =







l1
0

0







• In Σ0, tip of link 1

0p2 = 0R1(θ1)







l1
0

0





 =







l1 cos θ1
l1 sin θ1

0







θ

θ

1

2

x
y

x
y

Σ
Σ

1

1
1 2

2
2

Σ0



2 Link robot II 33

• In Σ2, tip of link 2

2pe =







l2
0

0







• In Σ1, tip of link 2

1pe = 1R2
2pe+

1p2 =







l1 + l2 cos θ2
l2 sin θ2

0







θ

θ

1

2

x
y

x
y

Σ
Σ

1

1
1 2

2
2

Σ0



2 Link robot II 34

• In Σ0, tip of link 2

0pe = 0R1
1pe = 0R1







l1 + l2 cos θ2
l2 sin θ2

0







=







l1 cos θ1 + l2 cos(θ1 + θ2)

l1 sin θ1 + l2 sin(θ1 + θ2)

0







• Orientation of link 2

0R2 =







cos(θ1 + θ2) − sin(θ1 + θ2) 0

sin(θ1 + θ2) cos(θ1 + θ2) 0

0 0 1









Homogeneous transformation 35

• Suppose that [x, y, z]⊤ and [x, y, z,1]⊤ are identical.

• Also [x, y, z, w]⊤ and [x/w, y/w, z/w,1]⊤ are identical.

• 2 link robot example:
[

1pe

1

]

=

[

1R2
1pe

0 1

] [

2pe

1

]

[

0pe(t)

1

]

=

[

0R1(t)
0p1

0 1

] [

1R2(t)
1p2

0 1

] [

2pe

1

]



Example 36

• Point at [X Y Z]⊤ in camera coordinate system is pro-

jected to

x = f
X

Z
, y = f

Y

Z

Image Plane

O
X

Y

Z

f

(X, Y, Z)

Z = f

x

y



Example 37

• In homogeneous transformation

s







x

y

1





 =







f 0 0 0

0 f 0 0

0 0 1 0



















X

Y

Z

1













• Actually we have

sx = fX, sy = fY, s = Z

and

x = f
X

Z
, y = f

Y

Z



Menu: Course I 38

• Basic mathematical tools for control and image process-

ing

• Tools for visual servo: cameras and software

• Image processing basics

• Nonlinear control and robot control

• Basic visual servo



What is visual servo 39



System 40

X

Y

θ1

θ2
Camera

x

y



Control law 41

• Task: Keep object image x = [x, y]⊤ at x∗ = [0,0]⊤.

• Model: θ1+→ x+, θ2+→ y+

• Control law:

θ̇ = −λ(x− x∗) = −λx

X

Y

θ1

θ2
Camera

x

y



Stability and sampling period 42

• Sampling period: T

• Motor angle during 1 period: Tλx

• If λ is big, then the robot moves quickly.

• But if both λ and T are big, then the motor rotate too

much and the response becomes vibratory.

• So when T is big we cannot increase λ.

• If delay exists, then the closed loop is easily become un-

stable.



Delay in the loop 43

• Image acquisition includes exposure, AD convert, data

transfer from camera to PC, DMA transfer to CPU.

• At least 1 frame delay from exposure to CPU.

• At least 1 frame delay for image processing.

• NTSC has 1/15 sec delay.



Camera resolution 44

• Image intensity at (i, j) pixel: Iij

• Center of mass
[

x
y

]

=
1

M00

N
∑

i=1

M
∑

j=1

(

Iij

[

i
j

])

M00 =
N
∑

i=1

M
∑

j=1

Iij

• In this case the resolution is not very critical.



Camera resolution 45

• On the other hand, for example template matching, find

(dx, dy) that minimize

ǫ(dx, dy) =
u+w
∑

i=u−w

v+w
∑

j=v−w

(I(i, j)− J(i + dx, j + dy))
2

where I is template and J is current image.

• With low resolution the features in the original scene is

lost and local matching becomes useless.

• And it is fragile to digitization.



Pyramidal computation 46

• As a recipe to local matching pyramidal computation is

useful.

• For example, matching with Gaussian low pass filter with

different mask sizes are used (OpenCV cvGoodFeaturesTo-

Track(), cvCalcOpticalFlowPyrLK()).



Feature matching 47

• For 3D reconstruction, feature matching with two images

are needed.

• In this case, scale invariant matching methods e.g., SIFT,

SURF, are used. SURF is included in OpenCV (from

1.1).



Image processing tools 48

• OpenCV is very handy and

easy to use.

• Image processing uses lin-

ear algebra a lot so use of

BLAS, LAPACK, ATLAS

are effective to speed up.

• For Intel CPU, Intel Inte-

grated Performance Primi-

tives is useful.

• google-perftools: fast mal-

loc, cpu profiler



Camera selection 49

ARTCAM-200MI (USB2.0 480Mbps)

GrasshopperTM(IEEE1394B 800Mbps)

MC1364 EoSens R© GE

(GigE VisionTM1Gbps)

MC1362 EoSens R© CL

(Camera LinkTM2.2Gbps)



Camera selection 50

VGA SXGA UXGA

USB2.0 46 — 10

IEEE1394B 200 — —

GigE VisionTM 300 80 —

Camera LinkTM 1600 500 —

• VGA (640× 480)

• SXGA (1280× 1024)

• UXGA (1600× 1200)

• ARTCAM-200MI (USB2.0 480Mbps)

• Dragonfly ExpressTM(IEEE1394B 800Mbps)

• MC1364 EoSens R© GE (GigE VisionTM1Gbps)

• MC1362 EoSens R© CL (Camera LinkTM2.2Gbps)



Interaction: image processing and control 51



Interaction: image processing and control52

• To estimate the helicopter

position, positions of mark-

ers are estimated.

• Set region of interest and

extract features.

• If some markers are not

found, these markers are

occluded.

• If marker information from

multiple cameras do not

match, then do not use the

camera that sent mismatch

data.



References 53

• OpenCV: http://opencv.willowgarage.com/wiki/

• BLAS: http://www.netlib.org/blas/

• LAPACK: http://www.netlib.org/lapack/

• ATLAS: http://math-atlas.sourceforge.net/

• IPP: http://software.intel.com/en-us/intel-ipp/

• google-perftools: http://code.google.com/p/google-perftools/



Menu: Course I 54

• Basic mathematical tools for control and image process-

ing

• Tools for visual servo: cameras and software

• Image processing basics

• Nonlinear control and robot control

• Basic visual servo



Image Processing 55

• Camera model

• Camera calibration

• Stereo (3D estimation basics)

• Epipolar geometry

• Fundamental matrix, Essential matrix

• Eight point algorithm (3D estimation without calibra-

tion)

• Homography



Image Processing 56

• Camera model

• Camera calibration

• Stereo (3D estimation basics)

• Epipolar geometry

• Fundamental matrix, Essential matrix

• Eight point algorithm (3D estimation without calibra-

tion)

• Homography



Camera position and image 57

• Point at vc = [x y z]⊤ in camera coordinate system

vw = xrx + yry + zrz + t = Rvc + t

X

Y

Z

z
x

y

Ow

Oc
t

ry rz
rx

vc

vw



Homogeneous matrix 58

• Augmented vector







x

y

1





 ,













X

Y

Z

1













• Homogeneous matrix of internal parameters

s







x

y

1






=







f 0 0 0

0 f 0 0

0 0 1 0



















X

Y

Z

1















Homogeneous transformation 59

• Rigid transformation (external parameters)

vw = xrx + yry + zrz + t = Rvc + t

• Augment vw and vc

vw =













xw

yw

zw

1













, vc =













x

y

z

1













• Homogeneous transformation

vw = Dvc, D =

[

R t

0⊤ 1

]



Pixel coordinate system 60

• u, v are pixel coordinate

u = ku(x + y cotφ) + u0

v = kv
y

sinφ
+ v0

y

x

z

u

v

(u0, v0)



Intrinsic parameters 61

• From position to pixels

u = ku(x + y cotφ) + u0

v = kv
y

sinφ
+ v0

s







u

v

1






= A













Xc

Yc

Zc

1













• Intrinsic parameter matrix

A =







fku fku cotφ u0 0

0 fkv/ sinφ v0 0

0 0 1 0









Lens distortion 62

• Barrel distortion

ud = u(1 + k1r2 + k2r4)

vd = v(1 + k1r2 + k2r4)



Image Processing 63

• Camera model

• Camera calibration

• Stereo (3D estimation basics)

• Epipolar geometry

• Fundamental matrix, Essential matrix

• Eight point algorithm (3D estimation without calibra-

tion)

• Homography



Camera calibration: setup 64

• Camera position

vw = Rvc + t, vc = R⊤vw −R⊤t

• Object image

s







u

v

1





 = A













Xc

Yc

Zc

1













= A [R⊤ −R⊤t ]













X

Y

Z

1













X

Y

Z

z
x

y

Ow

Oc
t

ry rz
rx

vc

vw



Calibration procedure 65

s







u

v

1





 = A [R⊤ −R⊤t ]













X

Y

Z

1













P = A [R⊤ −R⊤t ]

• Put a checker board at a known position.

• Then [X Y Z]⊤ becomes a known vector.

• We have two equations per point.

• Solve for P



Solve linear equations 66

• Let

P =







P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34







• Then we have

u =
P11X + P12Y + P13Z + P14

P31X + P32Y + P33Z + P34

v =
P21X + P22Y + P23Z + P24

P31X + P32Y + P33Z + P34



Calibration 67

• Problem: Find the solution P ∈ R3×4 that minimizes

∑

i

∥

∥

∥

∥

∥

∥

∥

∥

∥

si







ui
vi
1





−P











Xi
Yi
Zi
1











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

→ min

• Algorithm: For point i we have

sixi − (P11Xi + P12Yi + P13Zi + P14)

siyi − (P21Xi + P22Yi + P23Zi + P24)

si − (P31Xi + P32Yi + P33Zi + P34)

and eliminate si.



Calibration algorithm 68

• Let p = [P11, P12, . . . , P34]
⊤, then

[

Xi Yi Zi 1 0 0 0 0

−xiXi −xiYi −xiZi −xi

]

p = qixp
[

0 0 0 0 Xi Yi Zi 1

−yiXi −yiYi −yiZi −yi

]

p = qiyp

• Assume P34 = 1, then we have.




















x1
y1
x2
y2
...

yN





















−





















q1x
q1y
q2x
q2y
...

qNy





















p̂



Calibration algorithm 69

• Linear equations

min
p̂
‖y −Qp̂‖2

where y and Q are the data vector and matrix.

• Since Q is a tall matrix, the solution is obtained by the

generalized inverse.

p̂ = Q†y

• To find Lens distortion, nonlinear minimization is neces-

sary. See the calibration package of OpenCV or MAT-

LAB Image processing toolbox.



Image Processing 70

• Camera model

• Camera calibration

• Stereo (3D estimation basics)

• Epipolar geometry

• Fundamental matrix, Essential matrix

• Eight point algorithm (3D estimation without calibra-

tion)

• Homography



Stereo 71

 Camera1
 Camera2

World

Camera
Parameters

R1, t1 R2, t2

C1 C2

A1 A2

R, t

• Two cameras look at the same point vw = [X Y Z 1]⊤.

• Images of that point in two cameras are

m1 = [u1 v1 1]⊤, m2 = [u2 v2 1]⊤



Stereo 72

• Let P1,P2 be the projection matrix, then we have

s1m1 = P1vw

s2m2 = P2vw

• Suppose P1,P2 are calibrated as

P1 =







P1
11 P1

12 P1
13 P1

14

P1
21 P1

22 P1
23 P1

24

P1
31 P1

32 P1
33 P1

34







P2 =







P2
11 P2

12 P2
13 P2

14

P2
21 P2

22 P2
23 P2

24

P2
31 P2

32 P2
33 P2

34









Stereo 73

• Then we have

s1u1 = P1
11X + P1

12Y + P1
13Z + P1

14

s1v1 = P1
21X + P1

22Y + P1
23Z + P1

24

s1 = P1
31X + P1

32Y + P1
33Z + P1

34

• Multiply u1 and v1 to the third equation

s1u1 = P1
31u1X + P1

32u1Y + P1
33u1Z + P1

34u1

s1v1 = P1
31v1X + P1

32v1Y + P1
33v1Z + P1

34v1



Stereo 74

• Subtracting them from first and second equations, re-

spectively, yields





P1
11 − P1

31u1 P1
12 − P1

32u1 P1
13 − P1

33u1

P1
21 − P1

31v1 P1
22 − P1

32v1 P1
23 − P1

33v1











X
Y
Z







=





P1
34u1 − P1

14

P1
34v1 − P1

24







Stereo 75

• Similarly we have


















P1
11 − P1

31u1 P1
12 − P1

32u1 P1
13 − P1

33u1

P1
21 − P1

31v1 P1
22 − P1

32v1 P1
23 − P1

33v1

P2
11 − P2

31u2 P2
12 − P2

32u2 P2
13 − P2

33u2

P2
21 − P2

31v2 P2
22 − P2

32v2 P2
23 − P2

33v2

























X
Y
Z







=



















P1
34u1 − P1

14

P1
34v1 − P1

24

P2
34u2 − P2

14

P2
34v2 − P2

24



















i.e.,

Mvw = b =⇒ vw = M†b



Image Processing 76

• Camera model

• Camera calibration

• Stereo (3D estimation basics)

• Epipolar geometry

• Fundamental matrix, Essential matrix

• Eight point algorithm (3D estimation without calibra-

tion)

• Homography



Two cameras setup 77

 Camera1
 Camera2

World

Camera
Parameters

R1, t1 R2, t2

C1 C2

A1 A2

R, t

• Intrinsic parameters: A1,A2

• Geometrical relationship

R = R⊤1 R2, t = R⊤1 (t2 − t1)



Epipolar geometry 78

World

vw

m1 m2

e1
e2C1

C2

R, t

R1, t1
R2, t2

s1m1 = A1 [R⊤1 −R⊤1 t1 ]vw

s2m2 = A2 [R⊤2 −R⊤2 t2 ]vw



Epipolar geometry 79

s1m1 = A1 [R⊤1 −R⊤1 t1 ]vw

s2m2 = A2 [R⊤2 −R⊤2 t2 ]vw

s1(A1R
⊤
1 )−1m1 = vw − t1

s2(A2R
⊤
2 )−1m2 = vw − t2

s1R1A
−1
1 m1 − s2R2A

−1
2 m2 = t2 − t1

s1A
−1
1 m1 − s2RA−1

2 m2 = t

• Interpretation: Three vectors A−1
1 m1, RA−1

2 m2, t are on

the same plane.



Epipolar geometry 80

s1A
−1
1 m1 − s2RA−1

2 m2 = t

• Interpretation: Three vectors A−1
1 m1, RA−1

2 m2, t are on

the same plane.

World

vw

m1 m2

e1
e2C1

C2

R, t

R1, t1
R2, t2
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• Camera model

• Camera calibration

• Stereo (3D estimation basics)

• Epipolar geometry

• Fundamental matrix, Essential matrix

• Eight point algorithm (3D estimation without calibra-

tion)

• Homography



Skew-symmetric Matrix 82

• Let vector cross product operator be ∧.

• A−1
1 m1 and t ∧ (RA−1

2 m2) are orthogonal.

• Introduce a skew symmetric matrix of t = [tx ty tz]⊤

[t]∧ =







0 −tz ty

tz 0 −tx

−ty tx 0







[t]∧v =







tyvz − tzvy

tzvx − txvz

txvy − tyvx





 = t ∧ v



Fundamental Matrix 83

• Since

s1A
−1
1 m1 − s2RA−1

2 m2 = t

we have

[t]∧RA−1
2 m2 ⊥ A−1

1 m1

and

m⊤1 (A−1
1 )⊤[t]∧RA−1

2 m2 = 0

• Fundamental Matrix

F = (A−1
1 )⊤[t]∧RA−1

2

• Fundamental Equation

m⊤1 Fm2 = 0



Essential Matrix 84

• Fundamental Equation

m⊤1 Fm2 = 0

F = (A−1
1 )⊤[t]∧RA−1

2

• Essential Matrix

E = [t]∧R

• Essential Equation

v⊤1 Ev2 = 0

where

v1 = A−1
1 m1, v2 = A−1

2 m2



Property of essential matrix 85

• For any rotation matrix R and any skew symmetric matrix

T define a set of essential matrix by

E = {E : E = TR, R⊤R = I and T = [t]∧}

• For any matrix Q ∈ E is an essential matrix.

• And all essential matrix have eigenvalues λ, λ,0 (two du-

plicated and one zero).

Q ∈ E ⇐⇒ Q = UΣV⊤ and Σ = diag{λ, λ,0}



Proof of the property 86

(=⇒) : Let t = ‖t‖z and SVD Q.

• Since

QQ⊤ = TRR⊤T⊤ = TT⊤ = −T2

• Multiply a orthonormal basis [x y z] to T2

T2[x y z] = t ∧ t ∧ [x y z] = ‖t‖2[−x − y 0]

= [x y z]diag{−‖t‖2,−‖t‖2,0}

T2 = [x y z]diag{−‖t‖2,−‖t‖2,0}[x y z]⊤

• Thus

QQ⊤ = [x y z]diag{‖t‖2, ‖t‖2,0}[x y z]⊤

Q = [x y z]diag{‖t‖, ‖t‖,0}V⊤ = UΣV⊤

where V is any orthogonal matrix.



Proof of the property 87

(⇐=) : Let Q = UΣ0V
⊤ where Σ0 = diag{λ0, λ0,0}.

• Define Rz and decompose Q

Rz =







0 −1 0

1 0 0

0 0 1







Q = UΣ0R
⊤
z U⊤URzV

⊤ = T0R0

T0 = UΣ0R
⊤
z U⊤, R0 = URzV

⊤

• Show that R0 is rotation matrix and T0 is skew-symmetric.

RzΣ0 = Σ0Rz = −Σ0R
⊤
z

R⊤0 R0 = VR⊤z U⊤URzV
⊤ = I

T⊤0 = URzΣ0U
⊤ = UΣ0RzU

⊤ = −UΣ0R
⊤
z U⊤ = −T0



Image Processing 88

• Camera model

• Camera calibration

• Stereo (3D estimation basics)

• Epipolar geometry

• Fundamental matrix, Essential matrix

• Eight point algorithm (3D estimation without calibra-

tion)

• Homography



Eight point algorithm 89

• When a corresponding point from two cameras is found

then we have one essential equation.

• For N points, we have

m⊤1jEm2j = 0 for j = 1, . . . N

E =







e11 e12 e13

e21 e22 e23

e31 e32 e33







where mij is the image coordinate of j-th point in i-th

camera.

• E has 9 elements but it has 1 free dof because we can

multiply a scalar for essential equation.

• Thus 8 points are sufficient to estimate E.



Eight point algorithm 90

Be = 0, B =







b1
...

bN





 , e =













e11

e12
...

e33













,

bi = [u2ju1j u2jv1j u2js1j

v2ju1j v2jv1j v2js1j

s2ju1j s2jv1j s2js1j ]

‖e‖ = 1

Problem: Under ‖e‖ = 1, find e that minimizes ‖Be‖.

Solution: SVD B. e is the smallest singular vector. After

that, construct E from e and modify it so that it has singular

values λ, λ,0.



Finding motion parameters 91

• SVD of E

E = UΣV⊤

• Then t and R are given by

t = σ1u3, R = URzV
⊤

where u3 is the third column of U.



Code 92

1. Construct B from {(m1i,m2i), i = 1, . . . , N}

B=zeros(N,9);

for i=1:N

u1=m1(1,i); v1=m1(2,i); w1=m1(3,i);

u2=m2(1,i); v2=m2(2,i); w2=m2(3,i);

B(i,:)=[u2*u1, u2*v1, u2*w1,

v2*u1, v2*v1, v2*w1,

w2*u1, w2*v1, w2*w1];

end



2. Find e (‖e‖ = 1) such that ‖Be‖ → min.

[U D V]=svd(B); e=V(:,9);

3. Construct E from e, where traceE⊤E = 2 [Hartley].

E=sqrt(2)*[e(1:3)’; e(4:6)’; e(7:9)’];

# residual=trace(m2’*E*m1);

4. Find Ê = TR that minimize ‖Ê− E‖.

[U D V]=svd(E);

D=diag((D(1)+D(2))/2, (D(1)+D(2))/2, 0);

hatE=U*D*V’;



5. Decompose Ê to find R and T.

[U, D, V]=svd(hatE);

t=U(:,3);

Rz=[0 1 0; -1 0 0;0 0 1];

R1=U*Rz*V’;

R2=U*Rz’*V’;

6. Select a feasible R from R1, R2.



Image Processing 95

• Camera model

• Camera calibration

• Stereo (3D estimation basics)

• Epipolar geometry

• Fundamental matrix, Essential matrix

• Eight point algorithm (3D estimation without calibra-

tion)

• Homography



Homography matrix 96

Show a picture from different viewpoint.



Homography matrix 97

• Suppose that all points are on an plane.

• A complete correspondence of two images from different

view points is obtained by a Homography matrix H.

• Points in camera 1 and 2 are give by

m1 = [u1 v1 1]⊤, m2 = [u2 v2 1]⊤

then we have

sm1 = Hm2

• This equation holds for all points on a plane.



Homography matrix 98

vw

v1 v2

m1
m2

d

n2

C1

C2

R, t

• n2 is a normal vector of the plane.

• n2,v2,m2 are expressed in camera 2 coordinate system,

others are expressed in camera 1 coordinate system.



Homography matrix 99

• d2 is distance from the point C2 and the plane

n⊤2 v2 = d2

• R and t are transformation from camera 2 to 1:

v1 = Rv2 + t

• Since

n⊤2
d2

v2 = 1

we have the following equation by multiplying t from left.

tn⊤2
d2

v2 = t

• Finally we obtain

v1 =

(

R +
tn⊤2
d2

)

v2



Homography matrix 100

• Image of vw from cameras 1 and 2: m1,m2

s1m1 = A1v1, s2m2 = A2v2

• Thus we have

sm1 = Hm2

where

H = A−1
1

(

R +
tn⊤2
d2

)

A2



Points to homography matrix 101

• Homography equation

s







u1
v1
1





 =







h11 h12 h13
h21 h22 h23
h31 h32 h33













u2
v2
1







=







u2 v2 1 0 0 0 0 0 0
0 0 0 u2 v2 1 0 0 0
0 0 0 0 0 0 u2 v2 1

















h11
h12
...

h33











• Substitute s = h31u2 + h32v2 + h33

[

u2 v2 1 0 0 0 −u1u2 −u1v2 −u1
0 0 0 u2 v2 1 −v1u2 −v1v2 −v1

]











h11
h12
...

h33











= 0



Points to homography matrix 102

• Problem: Find h that satisfy

[

u2 v2 1 0 0 0 −u1u2 −u1v2 −u1
0 0 0 u2 v2 1 −v1u2 −v1v2 −v1

]











h11
h12
...

h33











→ min

• Solution: Using 4 points on a plane, the solution can be

obtained using SVD (under ‖h‖ = 1).



Code 103

1. Construct data matrix

C=zeros(2*m,9);

for i = 1:m

C(2*(i-1)+1:2*i,:)...

=[u2(i) v2(i) 1 0 0 0 -u1(i)*u2(i) -u1(i)*v2(i) -u1(i);

0 0 0 u2(i) v2(i) 1 -v1(i)*u2(i) -v1(i)*v2(i) -v1(i)];

end

2. SVD

[U,S,V]=svd(C);

3. Resize

sol = V(:,9);

H = [sol(1:3,1)’;sol(4:6,1)’;sol(7:9,1)’];



Position estimation from Homography 104

• When A1,A2 are known, we can compute R, t, n, d based

on

H = A−1
1

(

R +
tn⊤2
d2

)

A2

while a scale indefiniteness of t remains.

• First using intrinsic parameters we have

Ĥ = R +
tn⊤2
d2



Position estimation from Homography 105

• And SVD

Ĥ = UΣV⊤

where

Σ = d′R′+ t′n′
⊤

and

R = sUR′V⊤, t = Ut′, n2 = Vn′,

d2 = sd′, s = det(U)det(V)



Position estimation from Homography 106

• Let e1, e2, e3 be a orthonormal basis and let

n′ = x1e1 + x2e2 + x3e3,
3
∑

i=1

x2
i = 1

• Multiply ei to

Σ = d′R′+ t′n′
⊤

yields

σiei = d′R′ei + txi for i = 1,2,3

and

d′R′(xjei − xiej) = σixjei − σjxiej for i 6= j



Position estimation from Homography 107

• Since R preserve vector norm, we have

(d′2 − σ2
2)x

2
1 + (d′2 − d2

1)x
2
2 = 0

(d′2 − σ2
3)x

2
2 + (d′2 − d2

2)x
2
3 = 0

(d′2 − σ2
1)x

2
3 + (d′2 − d2

3)x
2
1 = 0

• Viewing these equations as a set of linear equations for

x2
1, x2

2, x2
3, then the determinant of the coefficient matrix

is zero.

(d′2 − σ2
1)(d

′2 − σ2
2)(d

′2 − σ2
3) = 0



Position estimation from Homography 108

• Classify by the number of duplication of singular values

σ1, σ2, σ3 of Ĥ

• All singular values are different (σ1 > σ2 > σ3)

– d′ = σ1 or d′ = σ3 are impossible. Because if d′ = σ1

then we have (σ2
1−σ2

3)x
2
2 +(σ2− d2

2)x
2
3 = 0 and finally

x1 = x2 = x3 = 0. d′ = σ3 is also excluded.

– Since d′ = ±σ2, we have

x1 =

√

√

√

√

σ2
1 − σ2

2

σ2
1 − σ2

3

x2 = 0 ǫ1, ǫ2 = ±1

x3 =

√

√

√

√

σ2
2 − σ2

3

σ2
1 − σ2

3



– Assume d′ > 0. Case for d′ < 0 is similar.

– Since d′ = d2, x2 = 0, e2 = R′e2 and

R′ =







cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ







– Thus

sin θ = (σ1 − σ3)
x1x3

σ2
= ǫ1ǫ2

√

(σ2
1 − σ2

2)(σ
2
2 − σ2

3)

(σ1 + σ3)σ2

cos θ =
σ1x2

3 + σ3x2
1

σ2
=

σ2
2 + σ1σ3

(σ1 + σ3)σ2

– And finally

t = (d1 − d3)







x1
0
−x3







– We have 4 cases due to the sign of ǫ1, ǫ2.



• One duplicate singular values (σ1 = σ2 > σ3 of σ1 > σ2 =

σ1)

– Let d′ = σ1 = σ2. Case for σ2 = σ3 is similar.

– We have x1 = x2 = 0, x3 = ǫ1 = ±1 and

R′ = I, t = (d3 − d1)n
′

• All singular values are duplicated (σ1 = σ2 = σ3).

– d′ = d1 = d2 = d3. We cannot find x1, x2, x3 and thus

R′ = I, t = 0



Code 111

1. SVD

[U,D,V]=svd(H);

d1=D(1,1); d2=D(2,2); d3=D(3,3);

suv=det(U)*det(V); d=d2;

2. No duplicate singular values (compute for 4 cases). n0 is

a normal vector of the plane

n0=[0;0;-1];

x1=sqrt((d1*d1-d2*d2)/(d1*d1-d3*d3));

x3=-sqrt((d2*d2-d3*d3)/(d1*d1-d3*d3));

n=[x1; 0; x3]; t=(d1-d3)*[x1;0;-x3];

st=(d1-d3)*x1*x3/d2; ct=(d1*x3*x3+d3*x1*x1)/d2;

R=[ct 0 -st;0 1 0;st 0 ct];



R1=suv*U*R*V’; t1=U*t; n1=V*n; n00=R*n0;

if (n00(3)<0)

yn(1)=norm(n0-n1);

else

yn(1)=10000;

end

3. Selection

[minn,index]=min(yn);

switch index

case 1

R=R1; t=t1; n=n1; d=suv*d;

case 2

: % similar

end

H=R+t/d*n0’;



Menu: Course I 113

• Basic mathematical tools for control and image process-

ing

• Tools for visual servo: cameras and software

• Image processing basics

• Nonlinear control and robot control

• Basic visual servo



State equation 114

• State: x(t)

• Input: u(t)

• State equation

ẋ(t) = f(x(t), u(t))

• Measurement: y(t)

y(t) = g(x(t), u(t))



Spring, Mass, Damper system 115

PSfrag replacements

u
m

k

d

y

• Dynamical equation

mÿ + dẏ + ky = u

• State

x1 = y, x2 = ẏ

• State equation
[

ẋ1

ẋ2

]

=

[

0 1

−k/m −d/m

] [

x1

x2

]

+

[

0

1/m

]

u



Linear System 116

• State equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

• Equilibrium point: When the input is zero then the state

will remain at this point.

x(t) = xe and ẋ(t) = 0 when u(t) = 0



Stability 117

• Autonomous system

ẋ(t) = Ax(t)

1. x(t) = 0 is the (only one) equilibrium point.

2. For initial state x(0) = x0, the state will follow

x(t) = eAtx0

where

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ · · · =

∞
∑

i=0

Aiti

i!



Stability 118

• By diagonalizing the matrix, we have eλit at the diagonal

element.

TeAtT⊤ =













eλ1t 0 · · · 0

0 eλ2t · · · 0
... ... . . . 0

0 0 · · · eλnt













• When Re(λi) < 0 we have

lim
t→∞

x(t) = 0

• Asymptotic stability: If the real parts of all eigenvalues

are negative, then the (LTI∗) system is asymptotically

stable.

∗Linear Time Invariant



Controller 119

• State equation

ẋ(t) = Ax(t) + Bu(t)

• State feedback

u(t) = −Kx(t)

• After feedback, closed loop system

ẋ(t) = (A−BK)x(t)

• Stability can be obtained by selecting an appropriate K.



Observer 120

• State equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

• Copy of system

ż(t) = Az(t) + Bu(t)

• Difference between actual and copy systems

ẋ(t)− ż(t) = Ax(t) + Bu(t)−Az(t)−Bu(t)

= A(x(t)− z(t))

• Let ξ(t) = x(t)− z(t). If A is stable,

lim
t→∞

‖ξ(t)‖ = lim
t→∞

‖eAtξ(0)‖ = 0



Observer 121

• Even if A is not stable, the state can be estimated by

using error feedback.

• State equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

• Estimation error feedback

ż(t) = Az(t) + Bu(t) + G(y(t)−Cz(t))

• Feedback system

ẋ(t)− ż(t) = Ax(t) + Bu(t)−Az(t)−Bu(t)−G(y(t)−Cz(t))

= (A−GC)(x(t)− z(t))

• Stability can be obtained by appropriately selecting G.



Nonlinear system 122

• Autonomous system

ẋ(t) = f(x(t), 0) = f(x(t))

• State feedback

u(t) = φ(x(t))

• After feedback

ẋ(t) = f(x(t), φ(x(t)))

• This is also an autonomous system



Stability of nonlinear system 123

• Equilibrium point: xe where f(xe(t)) = 0.

1. Local stability: Starting from a state sufficiently close

to xe then the solution will stay close to xe.

2. Local asymptotic stability: Starting from a state suf-

ficiently close to xe then the state will asymptotically

converge to xe.

3. Exponential stability: Starting from a state sufficiently

close to xe then the state will converge to xe expo-

nentially.

4. Global stability: Starting from any state then the state

will stay close to xe.

5. Global asymptotic stability: Starting from any state

then the state will asymptotically converge to xe.



Stability of linearized system 124

• Equilibrium point: xe where f(xe) = 0

• Taylor expansion

ẋ(t) = f(xe) +
∂f

∂x

∣

∣

∣

∣

∣

x=xe

(x− xe) + O((x− xe)
2)

• Neglecting higher order terms

˙̄x = Ax̄, A =
∂f

∂x

∣

∣

∣

∣

∣

x=xe

• If this linearized system is stable then the original nonlin-

ear system is locally asymptotically stable.



Example of pendulum 125

l

θ

mg

• mass: m, friction coefficient: γ, pendulum length: l

• Dynamical equation

mlθ̈ + γθ̇ + mg sin θ = 0



State equation of pendulum 126

• Dynamical equation:

mlθ̈ + γθ̇ + mg sin θ = 0

• State: x1 = θ, x2 = θ̇

ẋ1 = x2

ẋ2 = −
γ

ml
x2 −

g

l
sin x1

• Equilibrium points: ẋ = [ẋ1 ẋ2]
⊤ = [0 0]⊤, i.e.,

x2 = 0, sin x1 = 0

• Linearize the system at x = [0 0]⊤ and x = [π 0]⊤.



Linearized system at x1 = 0 127

• When x1 = 0

cos x1 = 1 and we have

A =
∂f

∂x

∣

∣

∣

∣

∣

x0

=









∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2









∣

∣

∣

∣

∣

∣

∣

∣

(0,0)

=

[

0 1

−
g

l
−

γ

ml

]

det(sI−A) = s2 + bs + c = s2 +
γ

ml
s +

g

l

Since b > 0, c > 0, A is stable.



Linearized system at x1 = π 128

• When x1 = π

cos x1 = −1 and we have

A =

[

0 1
g

l
−

γ

ml

]

det(sI−A) = s2 + bs + c = s2 +
γ

ml
s−

g

l

Since c < 0, A is unstable.

• This example shows that the pendulum down position is

stable and pendulum up position is unstable.

• When γ = 0, the eigenvalue of A becomes pure imaginary

and the system is marginally stable (not asymptotically

stable).



Control of nonlinear system 129

θ

f
M

m

x



Modeling 130

• cart mass: M , pendulum mass: m, pendulum length: 2l

• Internal force: horizontal: Fx, vertical: Fy

• cart position: x, pendulum angle: θ

Iθ̈ + µθθ̇ = Fxl cos θ + Fyl sin θ, I =
1

3
ml2

• Fx and Fy −mg generates pendulum acceleration.

Fx = m
d2

dt2
(x− l sin θ)

Fy −mg = m
d2

dt2
(l cos θ)

• f − Fx generates cart acceleration.

f − Fx = Mẍ + µxẋ
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• Eliminate the internal force, we have

(M + m)ẍ + mlθ̈ cos θ −mlθ̇2 sin θ + µxẋ = f

(I + ml2)θ̈ + mlẍ cos θ −mgl sin θ + µθθ̇ = 0
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• Assume that θ is small.

• Approximation

sin θ ≈ θ, cos θ ≈ 1

• Linearized system

(M + m)ẍ + mlθ̈ + µxẋ = f

(I + ml2)θ̈ + mlẍ−mglθ + µθθ̇ = 0

• Neglect force from pendulum to cart

ẍ + µ̂xẋ = αf, α =
1

M + m
,

θ̈ + µ̂θθ̇ = −βẍ + βgθ, β =
ml

I + ml2
,

µ̂x =
µx

M + m
, µ̂θ =

µθ

I + ml2
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• State equation

ẋ = Ax + bu

where x = [x θ ẋ θ̇]⊤ and

A =













0 0 1 0

0 0 0 1

0 0 −µ̂x 0

0 βg βµ̂x −µ̂θ













, b =













0

0

α

−αβ
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• Assume that the state x = [x θ ẋ θ̇]⊤ is available, then

state feedback

u = −Kx

is used.

• LQ regulator that minimize

J =
∫ ∞

0

{

x⊤Qx + u⊤Ru
}

dt

can be designed using lqr command of Matlab or octave.



Simulation 135

• α = 90, β = 3.7, µ̂x = 240, µ̂θ = 0.02

• R = 1,Q = diag[50,1,1,1]

• K = [−7.07,−15.75,−8.21,−2.80]
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• When only cart position and pendulum angle are avail-

able,

y =

[

x

θ

]

=

[

1 0 0 0

0 1 0 0

]

x

• lqe command of Matlab or octave is used to obtain

G =













1.00 3.11e− 3

3.11e− 4 1.21

8.64e− 6 3.06e− 5

4.04e− 3 72.5















Simulation 137

• x(0) = [0 0.52 0 0]⊤

• z(0) = [0.5 − 0.174 0 0]⊤

• Observer feedback: u = −Kz
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Lyapunov Function 138

• Lyapunov’s method is to check stability of nonlinear

system by investigating the (generalized) energy of the

system.

• Nonlinear autonomous system

ẋ(t) = f(x(t))

• Suppose that equilibrium point xe is 0.

• If xe is not 0 then put z(t) = x(t) − xe and check the

stability of

ż = f(x(t)) = f(z(t) + xe)



Positive definite function 139

• State x ∈ Rn

• Scalar valued function

V (x) : R
n → R

is said positive definite if it satisfies the following in region

Ω which includes 0

1. V (0) = 0

2. For any x ∈ Ω (x 6= 0), V (x) > 0

• V (x) ≥ 0: positive semi-definite

• V (x) < 0: negative definite

• V (x) ≤ 0: negative semi-definite



Derivative along trajectory 140

• Derivative of V (x) along its solution trajectory is defined

as follows

V̇ (x) =
dV (x(t))

dt
=

∂V (x)

∂x
ẋ =

∂V (x)

∂x
f(x)

where

∂V (x)

∂x
=
[ ∂V

∂x1

∂V

∂x2
· · ·

∂V

∂xn

]

• Thus it is actually the inner product of gradient of V (x)

and ẋ = f(x).

V̇ (x) =
∂V

∂x1
f1(x) +

∂V

∂x2
f2(x) + · · ·+

∂V

∂xn
fn(x)



Lyapunov stability theorem 141

• Sufficient condition of local stability

(LS1) V (x) is positive definite in Ω

(LS2) V̇ (x) is negative semi-definite in Ω

• Sufficient condition of local asymptotic stability

(LAS1) V (x) is positive definite in Ω

(LAS2) V̇ (x) is negative definite in Ω

• Sufficient condition of global asymptotic stability

(GAS1) V (0) = 0 and V (x) > 0 ∀x 6= 0

(GAS2) V̇ (x) < 0 ∀x 6= 0

(GAS3) When ‖x‖ → ∞, then V (x)→∞



Pendulum example 142

l

θ

mg

• x1 = θ, x2 = θ̇

ẋ =

[

ẋ1

ẋ2

]

=

[

x2

−
γ

ml
x2 −

g

l
sin x1

]

= f(x)
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• Lyapunov function candidate: total energy

V = K + P =
1

2
m(ωl)2 + mgh

=
1

2
ml2x2

2 + mgl(1− cos x1)

• In this case V (0) = 0 is satisfied by x2 = 0, cosx1 = 1.

• Ω = [(−π, π), R]

• Then V (x) is positive definite in Ω.

• Derivative of V

V̇ (x) =
[ ∂V

∂x1

∂V

∂x2

]

[

f1(x)

f2(x)

]

= [mgℓ sin x1 mℓ2x2 ]

[

x2

−γ
l x2 −

g
ℓ sin x1

]

= γlx2
2 ≤ 0
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• Thus the equilibrium point x = [0 0]⊤ is locally stable.

• To show the asymptotic stability we need LaSalle the-

orem.

• The invariant set of state that satisfy

V̇ = γlx2
2 = 0

is x2 = 0, ẋ2 = 0.

• Since

ẋ2 = −
γ

ml
x2 −

g

l
sin x1,

sin x1 = 0 is concluded, and in Ω this is satisfied only by

x1 = 0.



Robot kinematics 145

• Kinematics: The end tip position r of the robot is a

function of joint angle θ.

r = f(θ)

• Inverse Kinematics: To find a set of joint angle θ∗

that satisfy a specified end tip position r∗. Formally it is

written as

θ∗ = f−1(r∗),

but difficult to find a general solution.



Jacobi matrix 146

• Taylor expansion of f

r∗ − r = f(θ∗)− f(θ) = J∆θ + O((∆θ)2)

• Iterative solution of inverse kinematics:

∆θ = J−1(r∗ − r)

where J is defined by

J =
∂f

∂θ

and called Jacobi matrix.

• Jacobi matrix is a function of joint angle θ.



Robot Kinematics (2 link example) 147

θ

θ

1

2

(x, y)

x

y

• Endtip Position:

x = ℓ1 cos θ1 + ℓ2 cos(θ1 + θ2)

y = ℓ1 sin θ1 + ℓ2 sin(θ1 + θ2)

• Suppose that the motor driver is ve-

locity control, i.e.,

u1 = θ̇1, u2 = θ̇2

• Dynamical Equation:

ẋ = −ℓ1 sin θ1θ̇1

−ℓ2 sin(θ1 + θ2)(θ̇1 + θ̇2)

ẏ = ℓ1 cos θ1θ̇1

+ℓ2 cos(θ1 + θ2)(θ̇1 + θ̇2)
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θ

θ

1

2

(x, y)

x

y
• Dynamical Equation:

ẋ = −ℓ1 sin θ1θ̇1

−ℓ2 sin(θ1 + θ2)(θ̇1 + θ̇2)

ẏ = ℓ1 cos θ1θ̇1

+ℓ2 cos(θ1 + θ2)(θ̇1 + θ̇2)

• State Equation:
[

ẋ

ẏ

]

=

[

−ℓ1 sin θ1θ̇1 − ℓ2 sin(θ1 + θ2) −ℓ2 sin(θ1 + θ2)

ℓ1 cos θ1θ̇1 + ℓ2 cos(θ1 + θ2) ℓ2 cos(θ1 + θ2)

] [

u1

u2

]

• No f(x).

• The robot system has kinematic nonlinearity.
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• Let r = [x, y]⊤ be the output, then the system is de-

scribed by

r = f(θ)

where θ = [θ1, θ2]
⊤.

• Then we have

ṙ = J(θ)u,

where

u = θ̇ and J =
∂f

∂θ
=









∂f1
∂θ1

∂f1
∂θ2

∂f2
∂θ1

∂f2
∂θ2









.

The matrix J is called Jacobi matrix.
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• Objective: r(t)→ r∗(t)

• Derivative relation:

ṙ(t) = J(θ(t))θ̇(t)

• A simple control law:

θ̇(t) = λJ−1(θ(t))(r∗ − r(t))

or

θ̇(t) = λJ−1(θ(t))(r∗ − f(θ(t)))

• Resolved Motion Rate Control (Whitney, 1969)
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• Stability at θ = θ∗

• System

ṙ(t) = J(θ(t))θ̇(t)

• Control law

θ̇(t) = λJ−1(θ(t))(r∗ − r(t))

• Closed loop dynamics

ṙ(t) = λJ(θ(t))J−1(θ(t))(r∗ − r(t)) = λ(r∗ − r(t))

• Let e(t) = r(t)− r∗ then we have

ė(t) = −λe(t)

e(t) = e(0) exp(−λt)



Fixed gain control law 152

• In RMRC, J(θ(t)) and its inverse have to be computed

in realtime.

• Instead, fixed gain matrix J∗ = J(θ∗) can also be used.

θ̇(t) = λJ∗
−1(r∗ − r(t))
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• Closed loop system

ṙ(t) = λJ(θ(t))J∗−1(r∗ − r(t))

• Equilibrium point: When θ = θ∗, r = r∗ and ṙ = 0.

Thus θ = θ∗ is an equilibrium point.

• Lyapnov function candidate:

V (t) = (r∗ − r(t))⊤(r∗ − r(t))

• Derivative along the trajectory

V̇ (t) = −2(r∗ − r(t))⊤ṙ(t)
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• Thus we have

V̇ (t) = −2λ(r∗ − r(t))⊤J(θ(t))J∗−1(r∗ − r(t))

• At the equilibrium point θ = θ∗, since r = r∗. Thus we

have V̇ = 0.

• Also in the neighborhood of the equilibrium point,

J(θ)J∗−1 ≈ J∗J∗
−1 = I

and thus we have V̇ < 0.

• The region in which V̇ < 0 holds is not explicitly given.



Efficient second-order minimization 155

• Let J = J(θ(t)) and compute

Jesm = (J + J∗)/2

in realtime.

• Control law

θ̇(t) = λJ−1
esm(r∗ − r(t))

• Since Jesm = J∗ at the equilibrium point, the local sta-

bility property is the same as RMRC.

• This is efficient because Jesm approximate the Taylor ex-

pansion of r to the second order.

r∗ − r = Jesm∆θ + O((∆θ)3)



Two link robot 156

θ

θ

1

2

( , )x y

• Endtip position

r =

[

l1C1 + l2C12
l1S1 + l2S12

]

where C1 = cos θ1, S1 = sin θ1, C12 = cos(θ1 + θ2), S12 =

sin(θ1 + θ2)



Jacobi matrix 157

• Jacobi matrix

J =
∂r

∂θ
=

[

−l1S1 − l2S12 −l2S12
l1C1 + l2C12 l2C12

]

• Suppose that the link lengths are l1 = l2 = 1 and the

desired tip position is x = 1, y = 1.

• There are two configurations that achieves this position.

Here we assume that it is θ1 = 0, θ2 = π/2.

• Then the Jacobi matrix at the desired position is

J∗ =

[

−1 −1
1 0

]

• Initial position is θ0 = [0 0.1]⊤.
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Resolved motion acceleration control 163

• Previous examples neglected the robot dynamics

• In general robot dynamics is given by

M(θ)θ̈ + C(θ̇, θ) + G(θ) = τ

where M is inertia matrix, C is centrifugal and Coriolis

force, and G is gravity force.

• Let the estimation of these parameters be M̂, Ĉ, Ĝ, re-

spectively.

• Control law:

τ = M̂(θ)v + Ĉ(θ̇, θ) + Ĝ(θ)

where

v = θ̈
∗
+ λ1(θ̇

∗
− θ̇) + λ2(θ

∗ − θ)

and λ1, λ2 are feedback gains.



Resolved motion acceleration control 164

• If the estimations are exact, we have following closed

loop dynamics

ë + λ1ė + λ2e = 0, e = θ∗ − θ

which is asymptotically stable.

• However it is not easy to obtain good estimations. If the

parameter estimations are not correct, then the dynamics

are not well canceled and the performance is deteriorated.

• This control law requires a lot of computations. Paral-

lel algorithms and high speed approximations have been

proposed.



Menu: Course II 165

• 3D visual servo

• 2D visual servo

• 2.5D visual servo

• Sampling time issues

• ESM algorithm and visual tracking
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• 3D visual servo

• 2D visual servo

• 2.5D visual servo

• Sampling time issues

• ESM algorithm and visual tracking
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• History

• Expression of rotation

• Expression of angular velocity

• Position-based visual servo I

• Position-based visual servo II
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• History

• Expression of rotation

• Expression of angular velocity

• Position-based visual servo I

• Position-based visual servo II



Static visual servo, 1960-1975 169

Robot
Controller

Robot Task
Execution

Camera

Trajectory
Planning

Task

Joint Servo

Feature
Extraction

Feature
Interpretation

• Look and move

• Dashed line 0.1cycle/sec

• Only applicable to static object

• Position recognition for simple object



Position-based visual servo, 1975-1985 170

Reference
Position

+

-

Robot
Controller

Robot Task
Execution

Camera

Joint Servo

Feature
Extraction

Feature
Interpretation

• Looking while moving

• Position recognition is done in realtime

• Special hardware for image processing is necessary

• Robust and fast position recognition is the key



Position-based visual servo, 1985- 171

Reference
Position

+

-

Robot
Controller

Robot Task
Execution

Camera

Joint Servo

Feature
Extraction

Feature
Interpretation

• Due to quick development of hardware, realtime image

processing is available with CPU, GPU, multi-core...

• Realtime stereo is also possible

• In this section, position estimation is described
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• History

• Expression of rotation

• Expression of angular velocity

• Position-based visual servo I

• Position-based visual servo II



Expression of rotation 173

θ

p q

u

v
w

• q is a vector obtained by rotating

p with rotation matrix R.

q = Rp

• The rotation matrix is equivalent

to a rotation of θ around the unit

vector u.

• Find the relationship between R

and (θ,u).



Rodrigues formula 174

θ

p q

u

v
w

• Consider a circular disk orthog-

onal to u and contains points p

and q.

• Let w be the vector in the disk

which is the projection of p onto

the disk plane.

• Let v be the vector perpendicular

to w in the disk.

• Then we have

q = αu + sin θv + cos θw

where

w = p− αu, v = u ∧w
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θ

p q

u

v
w

• Substituting w into right hand

side of q yields

q = αu + sin θv + cos θw

= p−w + sin θ(u ∧ p) + cos θw

= p + sin θ(u ∧ p) + (cos θ − 1)w

• Moreover

w = −u ∧ v = −u ∧ (u ∧ p)

• Thus we have

q = p + sin θ(u ∧ p)

+ (1− cos θ)u ∧ (u ∧ p)



Rodrigues formula 176

θ

p q

u

v
w

• Let us introduce a skew symmet-

ric matrix

[u]∧ =







0 −uz uy

uz 0 −ux

−uy ux 0







• Since

q = p + sin θ(u ∧ p)

+ (1− cos θ)u ∧ (u ∧ p)

we have

q = Rp,

R = I + sin θ[u]∧+ (1− cos θ)[u]2∧

• Rodrigues rotation formula



From rotation matrix to (θ,u) 177

• Since u is a unit vector,

[u]2∧ =







u2
x − 1 uxuy uxuz

uxuy u2
y − 1 uyuz

uxuz uyuz u2
z − 1







• Take a trace of bothe hands of Rodrigues formula

traceR = 3 + (1− cos θ)(u2
x + u2

y + u2
z − 3) = 1− 2 cos θ

• Thus we have an equation for θ:

θ = arccos

(

1

2
(r11 + r22 + r33 − 1)

)

• On the other hand, since sin θ = θsincθ,

R−R⊤ = 2sin θ([u]∧) = 2sincθ(θ[u]∧)
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• Picking up the off-diagonal

elements of

R−R⊤ = 2sincθ(θ[u]∧)

yields

uθ =
1

2

1

sincθ







r32 − r23

r13 − r31

r21 − r12







• This equation is singular

only at θ = ±π. In this case

u can be found as an eigen-

vector of R associated to

the eigenvalue 1.
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• History

• Expression of rotation

• Expression of angular velocity

• Position-based visual servo I

• Position-based visual servo II



Angular velocity and rotation axis-angle 180

• When a vector x rotates with angular velocity ω, the

velocity of the vector x is

ẋ = ω ∧ x = [ω]∧x

• Let the column vectors of R be rx, ry, rz, we have

R = [rx ry rz], ṙx = [ω]∧rx, ṙy = [ω]∧ry, ṙz = [ω]∧rz

• Thus we have

Ṙ = [ω]∧R

• And also we have

[ω]∧ = ṘR⊤



Angular velocity and rotation axis-angle 181

• Derivative and transpose of Rodrigues formula

Ṙ = θ̇ cos θ[u]∧+ sin θ[u̇]∧

+ θ̇ sin θ[u]2∧+ (1− cos θ)[u̇]∧[u]∧

+ (1− cos θ)[u]∧[u̇]∧

R⊤ = I− sin θ[u]∧+ (1− cos θ)[u]2∧

• Note that

[u]3∧ = −[u]∧, [u]∧[u̇]∧[u]∧ = 0

then we have

[ω]∧ = sin θ[u̇]∧+ θ̇[u]∧

+ (1− cos θ)[u]∧[u̇]∧ − (1− cos θ)[u̇]∧[u]∧



Angular velocity and rotation axis-angle 182

• Moreover, since

[u]∧[v]∧ = vu⊤ − (u⊤v)I,

[u]∧[v]∧ − [v]∧[u]∧ = vu⊤ − uv⊤ = [[u]∧v]∧

we have

[ω]∧ = sin θ[u̇]∧+ θ̇[u]∧+ (1− cos θ)[[u]∧u̇]∧

• By comparing both sides we have

ω = θ̇u̇ + (sin θI + (1− cos θ)[u]∧)u̇



Angular velocity and rotation axis-angle 183

• Derivative of θu:

d(θu)

dt
= θ̇u + θu̇

• Multiply I + [u]2∧ to both sides

θ̇u = (I + [u]2∧)
d(θu)

dt

• And multiply −[u]2∧ to both sides

θu̇ = −[u]2∧
d(θu)

dt



Angular velocity and rotation axis-angle 184

• On the other hand, since

1− cos θ =
θ2

2
sinc2

(

θ

2

)

, sin θ = θ sinc θ

we have

ω = θ̇u̇ +

(

sincθI +
θ

2
sinc2

(

θ

2

)

[u]∧

)

θu̇

• Finally

ω =

(

I +
θ

2
sinc2

(

θ

2

)

[u]∧+ (1− sinc θ)[u]2∧

)

d(θu)

dt

• By computing the inverse of the matrix on the right hand

side, we have

d(θu)

dt
= Jθuω, Jθu = I−

θ

2
[u]∧+



1−
sincθ

sinc2 θ
2



 [u]2∧
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• From the image output m, compute the controlled value

s. And compare s with the desired value s∗. Derive the

input v so that s converges to s∗.

• In position-based visual servo, s is selected as a 3D pa-

rameter.

• The controlled error is

e(t) = s(m(t), v(t), a)− s∗

where a includes all parameters such as intrinsic and ex-

trinsic parameters of the camera, object shape and size.
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• History

• Expression of rotation

• Expression of angular velocity

• Position-based visual servo I

• Position-based visual servo II
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c

c*

• For example, a camera is mounted on the robot hand and

we want to control the camera position and orientation

c to the desired position and orientation c∗.

• Note that the relationship between the object and the

camera is not explicitly controlled. Only the relationship

between c and c∗ is important.
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Object

Current

Camera

Desired

Camera

cRo, cto

c∗Ro, c∗to

• Homography-based algorithm can be used to find R, t.

• object - camera: cto

• object - desired camera: c∗to



Control law 189

• Controlled variables:

e = s− s∗, s =

[

cto

θu

]

, s∗ =

[

c∗to

0

]

• Control input:

v =

[

cvc
cωc

]
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• Relationship between them:

dcto

dt
= −cvc −

cωc ∧
cto = −cvc + [cto]∧

cωc

d(θu)

dt
= Jθuω, Jθu = I−

θ

2
[u]∧+



1−
sincθ

sinc2 θ
2



 [u]2∧

• Thus we have

ė = Jv, J =

[

−I [cto]∧
0 Jθu

]

, v =

[

cvc
cωc

]
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• The control law

v = −λ J−1e = −λ

[

cto − c∗to + [cto]∧θu
θu

]

• The closed loop system

ė = −λe, e(t) = e−λte0

• Jθu becomes singular at θ = ±2π.

• Near the origin θ = 0, Jθu ≈ I.

• The system well behaves for practically important region.

• The stability region is almost global.

• This control law do not care how the image will change.

• Indeed, no guarantee to keep the object in the field of

view.



Simulation 192
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Camera trajectory 193
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Feature points trajectory 194
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Trajectory error 195
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3D visual servo 196

• History

• Expression of rotation

• Expression of angular velocity

• Position-based visual servo I

• Position-based visual servo II



Position-based control: Another choice 197

Current

Camera Desired

Camera

c

c∗
c∗Rc, c∗tc

• Controlled variable: Relative position expressed in the

desired coordinate system.

t = c∗tc = c∗c∗ − c∗c, R = c∗Rc

• Express orientation error using θu

e = s− s∗, s =

[

t

θu

]

, s∗ = 0



Control law 198

• Control input:

v =

[

cvc
cωc

]

• Relationship between input and controlled variables

dt

dt
=

d

dt

(

−c∗Rc
cc
)

= −Ṙcc−Rcċ

= [cωc]∧R
cc−R (−cvc − [cωc]∧

cc) = Rcvc

• Thus we have

ė = ṡ = Jv, J =

[

R 0

0 Jθu

]

, v =

[

cvc
cωc

]



Control law 199

• Control law

v = −λJ−1e = −λ

[

R⊤t

θu

]

• Closed loop system

ė = −λe, e(t) = e−λte0

• Jθu becomes singular at θ = ±2π.

• Near the origin θ = 0, Jθu ≈ I.

• The system well behaves for practically important region.

• The stability region is almost global.

• This control law do not care how the image will change.

• Indeed, no guarantee to keep the object in the field of

view.



Simulation 200
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Camera trajectory 201
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Feature points trajectory 202
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Trajectory error 203

0 20 40 60 80 100
-600

-400

-200

0

200

400

600

t

er
r



Menu: Course II 204

• 3D visual servo

• 2D visual servo

• 2.5D visual servo

• Sampling time issues

• ESM algorithm and visual tracking



2D visual servo 205

• Features and formulation

• Image Jacobi matrix

• Control law

• Undesired motion

• Simulation



2D visual servo 206

• Features and formulation

• Image Jacobi matrix

• Control law

• Undesired motion

• Simulation



Image features 207

ratio of areas
area

centroid

points

edge length

object image

• Image features: easy to extract, must change if camera

position changes, number of features must be larger than

the number of robot DOF



Visual servo 208

c

c*

• Image output: m

• Controlled variables: s

• Desired value: s∗

• Control input: v

• Design a controller so that: s→ s∗



Feature-based visual servo formulation 209

• Controlled variables s as image features

• Desired value s∗ as desired value of image features

• Find v so that

e(t) = s(m(t), v(t), a)− s∗

is minimized. Here a includes intrinsic and extrinsic pa-

rameters of the camera.



Feature-based visual servo formulation 210

Reference
Feature

+

-

Interpreter
& Controller

Robot Task
Execution

CameraFeature
Extraction

• This scheme does not require complicated object pose

estimation.

• Parameters on the object shape and size are not required.

• Desired features are generated by teach-by-showing.



2D visual servo 211

• Features and formulation

• Image Jacobi matrix

• Control law

• Undesired motion

• Simulation



Image Jacobi matrix 212

• Use points image as features.

• Point coordinate in 3D

p = [X Y Z]⊤

• The feature coordinate is

x = [x y]⊤ = [X/Z Y/Z]⊤

• Control input: robot hand position and orientation q

• Image Jacobi matrix:

Jx =
∂x

∂q



Image Jacobi matrix 213

• Input velocity: v = q̇

• Output velocity: ẋ

• Image Jacobi matrix: ẋ = Jxv

• Derivative of x

ẋ =
d

dt

(

X

Z

)

=
ẊZ −XŻ

Z2

ẏ =
d

dt

(

Y

Z

)

=
Ẏ Z − Y Ż

Z2



Image Jacobi matrix 214

• Point velocity due to camera motion

ṗ = −vc − ωc ∧ p

• Elements of velocity and angular velocity

vc = [vx vy vz]
⊤, ωc = [ωx ωy ωz]

⊤

• Then we have

Ẋ = −vx − ωyZ + ωzY

Ẏ = −vy − ωzX + ωxZ

Ż = −vz − ωxY + ωyX

• Substituting these equations into image velocity

ẋ = −vx/Z + xvz/Z + xyωx − (1 + x2)ωy + yωz

ẏ = −vy/Z + yvz/Z + (1 + y2)ωx − xyωy − xωz



Image Jacobi matrix 215

• In summary we have

ẋ = Jxv

Jx =

[

−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]

v =

[

vc

ωc

]

where Z is the depth.

• Stacking this relationship for n points yields

e = s− s∗, s =











x1
x2
...

xn











, s∗ =











x∗1
x∗2...
x∗n













2D visual servo 216

• Features and formulation

• Image Jacobi matrix

• Control law

• Undesired motion

• Simulation



System description 217

• System description

ė = Jv

where

J =











Jx1

Jx2
...

Jxn











is called the image Jacobi matrix.

• Number of features n should be equal to or larger than

the robot DOF m. In this case the image Jacobi matrix

J ∈ R
n×m becomes tall.



Control law 218

• A control law is given by

v = −λJ†e, J† = (J⊤J)−1J⊤, e = s− s∗, v =

[

vc

ωc

]

• In this case the error dynamics becomes

ė = J∗v = −λJ(J⊤J)−1J⊤e

• Note that

J(J⊤J)−1J⊤ 6= I

so it requires more discussion.



2D visual servo 219

• Features and formulation

• Image Jacobi matrix

• Control law

• Undesired motion

• Simulation



Undesired motion 220

Goal Image

Initial Image

• Suppose that initial and desired features are at 180 de-

gree rotated around the image center.

• Consider a control law

v = −λJ†(s− s∗)



Undesired motion 221

Goal Image

Initial Image

• This control law yields a motion that the feature points

move straightly to the desired points.

• Then the object image becomes infinitely small at the

image center.

• This means that the camera moves infinitely far away

from the object.



2D visual servo 222

• Features and formulation

• Image Jacobi matrix

• Control law

• Undesired motion

• Simulation



Selection of control gain matrix 223

• Generalized inverse

v = −λ J†(θ)(s− s∗)

• Fixed gain

v = −λ J∗
†(s− s∗)

where J∗ = J(θ∗)

• ESM

v = −λ Jesm
†(θ)(s− s∗)

where

Jesm(θ) = (J(θ) + J∗)/2



Simulation 224
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Generalized inverse: Camera trajectory 225
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Generalized inverse: Feature trajectory 226
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Generalized inverse: Feature error 227
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Fixed gain: Camera trajectory 228
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Fixed gain: Feature trajectory 229
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Fixed gain: Feature error 230
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ESM: Camera trajectory 231
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ESM: Feature trajectory 232
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ESM: Feature error 233
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Simulation for symmetric case 234
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Generalized inverse: Camera trajectory 235
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Generalized inverse: Feature trajectory 236
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Generalized inverse: Feature error 237
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Fixed gain: Camera trajectory 238
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Fixed gain: Feature trajectory 239
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Fixed gain: Feature error 240
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ESM: Camera trajectory 241
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ESM: Feature trajectory 242

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

u

v



ESM: Feature error 243
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Why fixed gain does not work properly 244

• 135 degree rotation

• J† law causes solid arrow flow

v = −λ J†(s− s∗)

• Swap initial and desired

v = −λ J∗
†(s∗ − s)

then this control law generates

the same solid arrow flow at s∗

• The J∗† law cause the inverse

of solid arrow flow as indicated

by the dotted arrow

v = −λ J∗
†(s− s∗)



Why ESM work nicely 245

• 135 degree rotation

• ESM law

v = −λ Jesm
†(θ)(s− s∗)

where

Jesm(θ) = (J(θ) + J∗)/2

• ESM is the average of J† and

J∗† and thus generates bold ar-

row flow.



Menu: Course II 246

• 3D visual servo

• 2D visual servo

• 2.5D visual servo

• Sampling time issues

• ESM algorithm and visual tracking



Hybrid visual servo 247

• Position-based schemes have good 3D property but can-

not control the image variables — easy to loose the tar-

get.

• Feature-based schemes have good robustness and good

image trajectory as well as low computational cost. How-

ever the stability is local and we may have undesired mo-

tion.

• Hybrid schemes are developed to have both goodness.



Hybrid visual servo 248

• 2-1/2D visual servo

• Deguchi

• Corke and Hutchinson



Hybrid visual servo 249

• 2-1/2D visual servo

• Deguchi

• Corke and Hutchinson



2-1/2D visual servo 250

• Control one feature point by feature-based visual servo

• Control other DOF using position-based visual servo

• Other DOF = Depth ρZ = Z/Z∗ & Orientation θu

e = s− s∗, s =











x
y

logZ
θu











, s∗ =











x∗

y∗

logZ∗

0











• The third element is ez = log ρZ

• Note that θu is obtained by Homography and

ρZ = det(H)
n∗⊤m∗

n⊤m



2-1/2D visual servo 251

• Controlled feature point: x = [x y]⊤

• Derivative relations

ẋ = Jxv

Jx =

[

−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]

v =

[

vc

ωc

]

d

dt
logZ =

Ż

Z
=

1

Z

[

0 0 −1 −y x 0
]

v

d(θu)

dt
= Jθuωc, Jθu = I−

θ

2
[u]∧+



1−
sincθ

sinc2 θ
2



 [u]2∧



2-1/2D visual servo 252

• In summary, we have

ė = Jv =

[

Jv Jω

0 Jθu

] [

vc

ωc

]

where

Jv =
1

Z∗ρZ







−1 0 x
0 −1 y
0 0 −1





 ,

Jω =







xy −(1 + x2) y

1 + y2 −xy −x
−y x 0







• Control law

v = J−1e



Simulation 253
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2-1/2D hybrid: Camera trajectory 254
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2-1/2D hybrid: Feature trajectory 255
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2-1/2D hybrid: Feature error 256
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2-1/2D hybrid: Camera trajectory 257
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2-1/2D hybrid: Feature trajectory 258
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2-1/2D hybrid: Feature error 259
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2-1/2D hybrid: Camera trajectory 260
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2-1/2D hybrid: Feature trajectory 261
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2-1/2D hybrid: Feature error 262
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2-1/2D hybrid: Camera trajectory 263
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2-1/2D hybrid: Feature trajectory 264
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2-1/2D hybrid: Feature error 265
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Simulation for symmetric case 266
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2-1/2D hybrid: Camera trajectory 267
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2-1/2D hybrid: Feature trajectory 268
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2-1/2D hybrid: Feature error 269
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Hybrid visual servo 270

• 2-1/2D visual servo

• Deguchi

• Corke and Hutchinson



Deguchi 271

• Let the translation error vector be

ev = d̂∗ R⊤
t

d
then this can be computed using Homography estimation.

• Translation error ev and angular error eω

ṡ =
[

Jv Jω

]

[

ev

eω

]

• Solving this equation for eω yields

eω = J−1
ω (ṡ− Jvev)

where ṡ should be replaced by s− s∗.

• Thus, control law becomes

v = −λ

[

ev

eω

]



Deguchi: Camera trajectory 272
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Deguchi: Feature trajectory 273
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Deguchi: Feature error 274

0 5 10 15 20 25 30
-500

-400

-300

-200

-100

0

100

200

300

t

er
r



Deguchi symmetric: Camera trajectory 275
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Deguchi symmetric: Feature trajectory 276
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Deguchi symmetric: Feature error 277
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Hybrid visual servo 278

• 2-1/2D visual servo

• Deguchi

• Corke and Hutchinson



Corke and Hutchinson 279

σ

θ

• To control the depth direc-

tion use the area σ insde

feature points (area of re-

gion bounded by feature

points).

etz = −γT (σ − σ∗)

• Rotation around Z axis

is controlled by the an-

gle θ between a line seg-

ment connecting two fea-

ture points and image hor-

izontal axis.

eωz = −γω(θ − θ∗)



Corke and Hutchinson 280

• The velocity along Z axis and angular velocity along Z

axis of the camera are

uz = [vz ωz]
⊤

• The velocities for other DOF are

uxy = [vx vy ωx ωy]
⊤

• Feature velocity is

ṡ = Jxyuxy + Jzuz

where Jxy is the 1, 2, 4, 5-th column and Jz is the 3,

6-th column of the image Jacobi matrix .



Corke and Hutchinson 281

• Define the camera velocity concerning Z axis be

uz =

[

etz
eωz

]

then we have the velocity for the other DOF as

uxy = J†xy(ṡ− Jzuz)

where ṡ should be replaced by s− s∗.



PKSH: Camera trajectory 282
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PKSH: Feature trajectory 283
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PKSH: Feature error 284
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PKSH symmetric: Camera trajectory 285
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PKSH symmetric: Feature trajectory 286
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PKSH symmetric: Feature error 287
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Menu: Course II 288

• 3D visual servo

• 2D visual servo

• 2.5D visual servo

• ESM algorithm and visual tracking



ESM visual tracking 289

• Image brightness map and warp

• Template matching

• Lucas and Kanade algorithm

• ESM algorithm



ESM visual tracking 290

• Image brightness map and warp

• Template matching

• Lucas and Kanade algorithm

• ESM algorithm



Image brightness map 291

1 2 3 n

mn

n+1 2n

n

m

• Brightness pattern of a region

• Image coordinate: x = [x y 1]⊤

• Brightness of this point: I(x)

• Brightness map

y = [I(x1) I(x2) · · · I(xq)]
⊤

• Note that x, y may not be integers.



Warp 292

• Warp: How to clip a subregion from brightness map

x′ = w(x;p)



Translation warp 293

p1

p2

I∗

I

• Warp parametrization: p = [p1, p2]
⊤

w(x;p) =

[

x + p1
y + p2

]



Translation and rotation warp 294

• Translation p1, p2

• Rotatioin p3

w(x;p) =

[

cos(p3) − sin(p3)
sin(p3) cos(p3)

] [

x
y

]

+

[

p1
p2

]

=

[

cos(p3) − sin(p3) p1
sin(p3) cos(p3) p2

]







x
y
1







• Obviously the warped coordinates x′ = w(x;p) are not

integer.
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p5

p6

I∗

I

• Warp parameters p = [p1, . . . , p6]
⊤

w(x;p) =

[

(1 + p1)x + p3y + p5
p2x + (1 + p4)y + p6

]

=

[

1 + p1 p3 p5
p2 1 + p4 p6

]







x
y
1
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I∗

I

• Homography is used for planer objects

sx = Gx∗

• Let gij be the (i, j) element of G and g33 = 1.
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• Then we have

s = g31x∗+ g32y∗+ 1

and

x = w(Gx∗) =













g11x∗+g12y∗+g13
g31x∗+g32y∗+1

g21x∗+g22y∗+g33
g31x∗+g32y∗+1

1













• Warp parameters p = [p1, . . . , p8]
⊤

w(x;p) =













p1x+p2y+p3
p7x+p8y+1

p4x+p5y+p6
p7x+p8y+1

1
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• Image brightness map and warp

• Template matching

• Lucas and Kanade algorithm

• ESM algorithm



Template matching 299

• Template image brightness map

y∗ = [I∗1 I∗2 · · · I∗q ]
⊤

• Template matching: Find p such that

∑

x∈T

[

I(w(x;p))− I∗
]2 → min



Template matching as visual servo 300

• Suppose

s(p) = [I(w(x1;p)) I(w(x2;p)) · · · I(w(xq;p))]⊤

s∗ = [I∗1 I∗2 · · · I∗q ]
⊤

• Template matching is visual servo in which the error func-

tion is defined by

e = s(p)− s∗
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• Image brightness map and warp

• Template matching

• Lucas and Kanade algorithm

– Additional

– Compositional

– Inverse compositional

• ESM algorithm



Lucas-Kanade algorithm formulation 303

• Suppse we have a estimation of p and we want to update

the parameter by computing ∆p by minimizing the cost

function
∑

x∈T

[

I(w(x;p + ∆p))− I∗(x)
]2

• In other words, suppose that we have p and want to find

∆p that minimize

‖e‖ = ‖s(p + ∆p)− s∗‖

and updete the parameter by

p← p + ∆p

• An iteretion will stop when ‖∆p‖ < ǫ.
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• Taylor expansion of I(w(x;p + ∆p)) at ∆p = 0

I(w(x;p + ∆p)) = I(w(x;p)) +∇I
∂w

∂p
∆p

• In other words

s(p + ∆p) = s(p) + J(p)∆p

where

J(p) = JI(p)Jw =











∇I1
∇I2
...
∇Iq











∂w

∂p
,

JI(p) =











∇I1
∇I2
...
∇Iq











, Jw =
∂w

∂p
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• In this equation

∇Ik = ∇I|w(xk;p) =

[

∂I

∂x

∂I

∂y

]∣

∣

∣

∣

∣

w(xk;p)

is the gradient of I evaluated at the warped point w(xk;p).

• While

∂w

∂p
=







∂wx
∂p1

∂wx
∂p2

· · · ∂wx
∂pn

∂wy
∂p1

∂wy
∂p2

· · ·
∂wy
∂pn







where

w(x;p) =

[

wx(x;p)
wy(x;p)

]
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• The cost function to be minimized

‖s(p) + J(p)∆p− s∗‖

• Nonlinear minimization

∆p = −S−1J⊤(p)
(

s(p)− s∗
)

where

– SDM

S = I

– GNM

S = J⊤(p)J(p)

– LMM

S = J⊤(p)J(p) + γD
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• Image brightness map and warp

• Template matching

• Lucas and Kanade algorithm

– Additional

– Compositional

– Inverse compositional

• ESM algorithm



Lucas-Kanade compositional algorithm 308

• Compositional warp

I(w(w(x;∆p);p))− I∗(x)

• Warp update with warp increment: w(x;∆p)

w(x;p)← w(x;p) ◦w(x;∆p) = w(w(x;∆p);p)



Compositional warp: translation 309

• Translation warp

w(x;p′) = w(x;p) ◦w(x;∆p) =

[

x + p1 + ∆p1
y + p2 + ∆p2

]

• Warp parameters
[

p′1
p′2

]

=

[

p1 + ∆p1
p2 + ∆p2

]
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• Affine warp

w(x;p′) = w(x;p) ◦w(x;∆p)

=







1 + p1 p3 p5
p2 1 + p4 p6
0 0 1













1 + ∆p1 ∆p3 ∆p5
∆p2 1 + ∆p4 ∆p6
0 0 1













x
y
1







=







1 + p′1 p′3 p′5
p′2 1 + p′4 p′6
0 0 1













x
y
1







• Warp parameters




















p′1
p′2
p′3
p′4
p′5
p′6





















=





















p1 + ∆p1 + p1∆p1 + p3∆p2
p2 + ∆p2 + p2∆p1 + p4∆p2
p3 + ∆p3 + p1∆p3 + p3∆p4
p4 + ∆p4 + p2∆p3 + p4∆p4
p5 + ∆p5 + p1∆p5 + p3∆p6
p6 + ∆p6 + p2∆p5 + p4∆p6
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• Homography warp

w(x;p′) = w(x;p) ◦w(x;∆p)

= w(Gw(∆Gx))

= w



















p1 p2 p3
p4 p5 p6
p7 p8 1



















∆p1x+∆p2y+∆p3
∆p7x+∆p8y+1

∆p4x+∆p5y+∆p6
∆p7x+∆p8y+1

1

























=

















p′1x+p′2y+p′3
p′7x+p′8y+1

p′4x+p′5y+p′6
p′7x+p′8y+1

1
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• Warp parameters






























p′1
p′2
p′3
p′4
p′5
p′6
p′7
p′8































=
1

q































p1∆p1 + p2∆p4 + p3∆p7
p1∆p2 + p2∆p5 + p3∆p8

p1∆p3 + p2∆p6 + p3
p4∆p1 + p5∆p4 + p6∆p7
p4∆p2 + p5∆p5 + p6∆p8

p4∆p3 + p5∆p6 + p6
p7∆p1 + p8∆p4 + ∆p7
p7∆p2 + p8∆p5 + ∆p8































,

q = p7∆p3 + p8∆p6 + 1

• Composition

w(x;p′) = w(Gw(∆Gx)) = w((G∆G)x)
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• The cost function to be minimized

∑

x∈T

[

I(w(x;p + ∆p))− I∗(x)
]2

• Taylor expansion around ∆p = 0

I(w(w(x; 0);p)) +∇I(w)
∂w

∂p
∆p− I∗(x)

where I(w) = I(w(x;p)) is the warped image and ∇I(w)

is the gradient of warped image.

• Note that w(x; 0) is unit warp

w(x; 0) = x
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• Thus we have

I(w(x;p)) +∇I(w)
∂w

∂p
∆p− I∗(x)

• Let

e = s(p) + J(p)∆p− s∗

• Then the parameter updete is given by

∆p = −S−1J⊤(p)
(

s(p)− s∗
)

where

J(p) =











∇I1
∇I2
...
∇Iq











∂w

∂p
, ∇Ik = ∇I(w(xk;p))
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• Difference between additional and compositional algo-

rithms

1. Gradient:

– Additional: Gradient of input image evaluated at

warp position

– Compositional: Gradient of warp image

2. Jacobi matrix

– Additional: ∂w
∂p

is evaluated at (x;p)

– Compositional: ∂w
∂p

is evaluated at (x; 0)
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• Image brightness map and warp

• Template matching

• Lucas and Kanade algorithm

– Additional

– Compositional

– Inverse compositional

• ESM algorithm
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• Swap the role of input image and template

I∗(w(x;∆p))− I(w(x;p))

• Warp update

w(x;p)← w(x;p) ◦w(x;∆p)−1

• Taylor expansion of I∗ at ∆p = 0

I∗(w(x; 0)) +∇I∗
∂w

∂p
∆p− I(w(x;p))

• Since w(x; 0) is unit warp, we have

I∗(x) +∇I∗
∂w

∂p
∆p− I(w(x;p))

where ∇I∗ is gradient of template and constant vector.

Since the Jacobi matrix ∂w
∂p

is evaluated at p = 0, the

matrix can be computed before start tracking.



Lucas-Kanade inverse compositional 318

• Based on this discussion, the formulation becomes the

minimization of

s∗+ J∗∆p− s(p)

where

J∗ =











∇I∗1
∇I∗2...
∇I∗q











∂w

∂p

∣

∣

∣

∣

∣

p=0

, ∇I∗k = ∇I∗(xk)

is a constant matrix.

• Then the parameter update is given by

∆p = −S−1J∗
⊤ (

s(p)− s∗
)

where S can be selected from SDM, NM, GNM, and

LMM.
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• Note that J∗ and S can be computed befor start tracking.

• The warp increment w(x;∆p) should be invertible.
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• Image brightness map and warp

• Template matching

• Lucas and Kanade algorithm

• ESM algorithm

– Parametrization of homography matrix

– ESM Formulation

– ESM Derivation

– ESM Tracking experiments
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• Homography matrix G has 9 elements and 1 constraint

• Assume detG = 1 to avoid singularity condition

– Singularity: When detG = 0, the object plane is par-

allel to optical axis.

– For a matrix A with traceA = 0, G = exp(A) satisfies

detG = 0.

• Parametrization: z = [z1, . . . , z8]
⊤

G(z) = exp(A(z)), A(z) =
8
∑

i=1

ziAi

where Ai are 8 bases of traceA = 0.
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• 8 bases of traceA = 0

A1 =







0 0 1
0 0 0
0 0 0





 , A2 =







0 0 0
0 0 1
0 0 0





 ,

A3 =







0 1 0
0 0 0
0 0 0





 , A4 =







0 0 0
1 0 0
0 0 0





 ,

A5 =







1 0 0
0 −1 0
0 0 0





 , A6 =







0 0 0
0 −1 0
0 0 1





 ,

A7 =







0 0 0
0 0 0
1 0 0





 , A8 =







0 0 0
0 0 0
0 1 0
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• Image brightness map and warp

• Template matching

• Lucas and Kanade algorithm

• ESM algorithm

– Parametrization of homography matrix

– ESM Formulation

– ESM Derivation

– ESM Tracking experiments
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• Use compositional warp

• Suppose z is current parameter and ∆z is parameter up-

date, then

I(w(w(x;∆z); z))− I∗(x)

and warp update is

w(x; z)← w(x; z) ◦w(x;∆z) = w(w(x;∆z); z)

• Taylor expansion of I at ∆z = 0 is given by

I(w(w(x; 0); z)) +∇I(w)
∂w

∂z
∆z− I∗(x)

• Since w(x; 0) is unit warp, we have

I(w(x; z)) +∇I(w)
∂w

∂z
∆z− I∗(x)
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• I(w) = I(w(x; z))

• ∇I(w) is gradient of warped image

• Let

s(z) = [I(w(x1; z)) I(w(x2; z)) · · · I(w(xq; z))]
⊤

s∗ = [I∗(x1) I∗(x2) · · · I∗(xq)]
⊤

then the function to be minimized is

e = s(z)− s∗
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• Image brightness map and warp

• Template matching

• Lucas and Kanade algorithm

• ESM algorithm

– Parametrization of homography matrix

– ESM Formulation

– ESM Derivation

– ESM Tracking experiments
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• ESM method use Jacobi matrices at current and desired

points.

• Current Jacobi matrix is

J(z) = JI(z)JwJG =











∇I1
∇I2
...
∇Iq











∂w

∂g

∂g

∂z
,

JI(z) =











∇I1
∇I2
...
∇Iq











, Jw =
∂w

∂g
, JG =

∂g

∂z
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• Image gradient

∇Ik = ∇I(w(xk;p))

• Warp

w(Gx∗) =





















g11x∗+ g12y∗+ g13

g31x∗+ g32y∗+ g33

g21x∗+ g22y∗+ g23

g31x∗+ g32y∗+ g33

1





















• Second Jacobi matrix

Jw =







x∗ y∗ 1 0 0 0 −ux∗ −uy∗ −u
0 0 0 x∗ y∗ 1 −vx∗ −vy∗ −v
0 0 0 0 0 0 0 0 0









Detail of Jacobi matrix 329

• Third Jacobi matrix

JG =
[

[A1]v [A2]v · · · [A8]v

]

where [Ai]v is a vector composed of elements of Ai.
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• When z reaches the desired state z∗ then the image

I(w(x; z∗)) becomes I∗(x).

• Then the Jacobi matrix is

J∗ = JI∗J
∗
wJ∗G =











∇I∗1
∇I∗2...
∇I∗q











∂w

∂g

∣

∣

∣

∣

∣

z∗

∂g

∂z

where JI∗ is the Jacobi matrix of the template image and

J∗w = Jw, J∗G = JG
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• ESM

∆z = −J
†
esm

(

s(z)− s∗
)

Jesm =
1

2
(J(z) + J∗) =

1

2
(JI(z) + JI∗)JwJG
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• Image brightness map and warp

• Template matching

• Lucas and Kanade algorithm

• ESM algorithm

– Parametrization of homography matrix

– ESM Formulation

– ESM Derivation

– ESM Tracking experiments
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