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Today'’s topics

e Stability notations of nonlinear systems
e Lie derivative

e Lyapunov stability

e Lyapunov's indirect method



Stability notations of nonlinear systems



Stability 3

Consider the autonomous system

z = f(x) f.:D—R"

where D is an open and connected subset of R”.

Assume that x = z. is an equilibrium point, i.e., f(xe) = 0.
Definition 3.1 The equilibrium point x = z. is said to be
stable if for each € > 0, 35(¢) > 0O

[2(0) —ze|| <6 = [lz(t) —me|| <e VI =>to

otherwise, the equilibrium point is said to be unstable.
Bounded input bounded output stability
This is the weakest form of stability.



Convergent, Asymptotical Stability 4

e Definition 3.2 The equilibrium point x = z. is said to be
convergent if for any given €; > 0, 361(e1) > 0 and 3IT such
that

|z(0) —ze|]| <61 = |x(t) —ze|| <e1 VE>tg+T.

e FOor a convergent equilibrium point we can say
t—o00
e Definition 3.3 The equilibrium point x = z. is said to be
asymptotically stable if it is both stable and convergent.



Exponential Stability 5

e Definition 3.4 The equilibrium point x = z. is said to be
locally exponentially stable if there exist two real constants
a, A > 0 such that

1z(t) — ze|| < a||z(0) — zelle™ V¢ > 0.

e EXxponential stability is the strongest form of stability.

e EXxponential stability implies asymptotic stability, however,
the converse is not true.

e Global stability requires more rigorous discussion.



Exponential Stability of Linear Systems 6

e For linear systems they are globally exponentially stable if
it is stable.

e Shift the equilibrium point and hereafter we discuss the sta-
bility of the origin.



Positive definate function



Positive Definite Functions 8

e Definition 3.5 A function V : D — R is said to be positive
semi definite in D if it satisfies the following conditions:
(i) 0e D and V(0) = 0.

(i) V() >0, Vzin D-—{0}

e V:D — R is said to be positive definite in D if condition
(ii) is replaced by (ii").
(ii") V(z) >0, Vzin D— {0}

e Finally, V : D — R is said to be negative definite (semi
definite) in D if —V is positive definite (semi definite).



Example of Positive Definite Function 9

e T he simplest and most important class of positive definite
function is defined as follows:

V(z) =2'Qr :R" =R, QeR™" Q=0

Since @ is symmetric, we know that its eigenvalues are all
real.

V is positive definite & M\, >0,Vi=1,...,n
V' is positive semi definite < M\, >0,Vi=1,...,n
V' is negative definite & X\, <0O,Vi=1,...,n
V is positive semi definite & M\, <0,Vi=1,...,n

Thus for example:

O
V(z) = az? +bxs =[z1 o] . "l >0, Va,b>0.
O b |xo



Positive definite functions (PDFs) 10

e PDFs constitute the basic building block of the Lyapunov
theory.

e PDFs can be seen as an abstraction of the total energy
stored in the system.

e All of the Lyapunov stability theorems focus on the study
of the time derivative of a positive definite function along
the trajectory of z = f(x).



Time Derivative along the Trajectory

11

e [ ime derivative of V along the trajectory:
1. Trajectory

z = f(z)
2. Time derivative
. A4 oV dx
V(ZB) — E a—a — VVf(m) _
[ f1(x)
_ oV av 1 | f2(z)
— [ax1 e %] )
_fﬁ(x)_




Lie derivative



Lie derivative 13

e Definition 3.6 Let V : D — R and f: D — R"™ The Lie
derivative of V along f, denoted by LfV, is defined by

LeV(z)= g—‘;f(:c)

Thus according to this definition, we have that

V(@) =9 f@) = VV i) = LV (@),



Example: Lie derivative 14

e Example: Let

. axq
€T =
bxro + COSxq

and define V = z% + x3. Thus we have

V()

arq
L —_—
fV(ac) [2:[31 2:[32] [bmg —|— COS$1]

— 20,:13% -+ be% + 225 COS x7.

e It is clear from this example that the V(z) depends on the
system’s equation f(x) and thus it will be different for dif-
ferent systems, even if V is the same.



Lyapunov stability



Lyapunov Stability Theorem 16

e Theorem 3.1 Let = 0 be an equilibrium point of z =
f(x), f: D — R" and let V : D — R be a continuously
differentiable function such that
(i) V(0) =0,

(i) V(z) >0 in D —{0}

(iii) V(z) <0 in D —{0},
then £ = 0O is stable.

e The theorem implies that a sufficient condition for the
stability of the equilibrium point x = 0O is that there exists
a continuously differentiable positive definite function V(x)
such that V(z) is negative semi definite in a neighborhood
of x = 0.



Lyapunov’s Asymptotic Stability Theorem 17

e Theorem 3.2 Let £ = 0 be an equilibrium point of z =
f(x), f: D — R" and let V : D — R be a continuously
differentiable function such that
(i) V(0) =0,

(i) V(z) >0 in D —{0}

(iii) V() <0 in D — {0},

thus £ = 0 is asymptotically stable.



Proof of theorem 3.1 18

e Choose r > 0 such that the closed ball
Br={x e R": ||z|| <r}
IS contained in D. Let

a= min V(x).
|z||=r

Now choose B € (0,«) and denote

Qp={x € Br: V() <}

Thus, by construction, Q3 C Br. Now suppose that z(0) ¢
Qg. By assumption (iii) of the theorem we have that

V(z) <0 = V(z)<V(z(0)<B Vt>O0.



Proof of theorem 3.1 (Cont.) 19

e It then follows that any trajectory starting in Qﬁ at t = 0O
stays inside QB for all t > 0. Moreover, by the continuity of
V(x) it follows that 36 > 0 such that

|z]| <6 = V(x)<B (BseS2g¢€ Br).

Thus we have

|lz(0)[| <d = z(t)eQpeBr Vt>0
and then
l2(0)| <5 = fa@®|<r<e Vt>0

which means that the equilibrium x = O is stable.



Lyapunov function 20

e Finding a positive definite function is easy because V is
independent of the dynamics of the differential equation
under study.

e While V depends on this dynamics.

e For this reason, when a function V is proposed as possible
candidate to prove the stability, V is said to be a Lyapunov
function candidate.

e If in addition V happens to be negative definite, then V is
said to be a Lyapunov function for that particular equilib-
rium point.



Example: Pendulum without friction 21

e Dynamical equation:

mel + mgsind = 0

e State variables: z1 = 6,20, =6

T 13y,

g .
——SINx
E 1

)

e [otal Energy of the system

1
F = K+ P= Em(wﬁ)z + mgh

1
= §m€2x% + mgl(1l — cosxq)



Example (Cont.)

22

Define:
1 22
V(z)=F = §m€ r5+mgl(1l—Ccosxq)

Clearly V(0) = 0, however, we have
V(z) = 0 whenever x = [z1,z0]L =
[2k7,0]Y. Thus V is not positive
definite.

Restrict the domain:

x1 € (—2m,27),
l.e.,
V:D—>R, D=][(-2m2r),R]"’

With this restriction, V is positive
definite.



Example (Cont.) 23

e Evaluate the derivative

1
Viz) = EmEQ:E% + mgl(1 — coszq)

| B N f1(z)
Viz) = VVf(z)= [@fﬂl 5962] fz(w)]
= [mglsinzy m€2$€2] ! %ZQn 331]

= mglxoSinxy — mglxrosSinxzy =0

e Thus V(z) = 0 and the origin is stable.



Example: Pendulum with friction 24

e Dynamical equation:

mel + mgsin + k6 =0

e State variables: z7 = 6,20, =6

r1 = X2
. g . k
ro = ——SINxr1 ——xo
14 m
o x = [x1,x2]" = [0,0]" is an equilibrium
point.
mg e Total Energy:

1
Viz) = Emﬁzaf;% + mgl(1 — coszq)




Example (Cont.) 25

e Evaluate the derivative

1
V(x) = Emézm% + mgl(1 — coszq)

V(z) = [mglsinzy ml2z5] . T2 L
—7 SINxTq1 — m L2
= —k£2$%

e V() is negative semi-definite.

e [ heorigin isstable but cannot conclude asymptotic stability.

e [ he result is disappointing since we know that it is asymp-
totically stable.

e [ he Lyapunov theorem is sufficient condition.



LaSalle’s Asymptotic Stability Theorem 26

e Theorem 3.6 Let x = 0 be an equilibrium point of

z=f(z), [f:D—R",

and let V : D — R be a continuously differentiable function
such that
(i) V(0) =0,
(ii) V() >0 in D, where we assume that 0 € D
(iii) V() <0 in a bounded region R C D
(iv) V(x) does not vanish identically along any trajectory in
R other than x = 0.
then x = 0 is asymptotically stable.



Example

27

e For the pendulum with friction, we know

1
Vi) = EmEQm% + mgl(1 — coszq)

Viz) = —kéQ:U%

e V(z) is negative semi-definite in D = [(—=, 7),R]L.

e Suppose a closed region
R=[(—n,7),(—a,a)]l  for any a > 0.
e Check the condition (iv).

V=0 = 0=-kf’z5 < a2,=0

thus, x> = 0,Vt. This also conclude that o, = 0.



Example (Cont.) 28

e State equation:

T1 = T2

. g _. k
o = —Zsmwl—awg

e ro =0 and xo = 0, thus sinzy = 0.

e Restricting z1 € (—m,7), sinzy = 0 if and only if z1 = 0.

e It follows that V(z) does not vanish identically along any
solution other than = 0, and the origin is locally asymp-
totically stable.



Assignments 29

1. Build a model (select one) from the examples given in the
chapter 3 of the text.

Cruise control

Bicycle dynamics

Bicycle steering

Operational amplifier circuit

Operational amplifier oscillator
Congestion control using RED

Atomic force microscope with piezo tube
Drug administration)

Population dynamics

Fisheries management



. Example 4.1: Solve the following equation with xg = [0, 1]
using MATLAB, where

G+ 2¢woq + wig = 0
and (<1, wg =1, x = [q,q] (for several ().

. Example 4.9: Consider a nonlinear system

(a) Find its equilibrium.

(b) Shift the equilibrium to 0 and derive the new system
equation.

(c) Using Lyapnov function show it it locally asymptotically
stable.



