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Today’s topics 1

• Stability notations of nonlinear systems

• Lie derivative

• Lyapunov stability

• Lyapunov’s indirect method



Stability notations of nonlinear systems



Stability 3

• Consider the autonomous system

ẋ = f(x) f : D → Rn

where D is an open and connected subset of Rn.

• Assume that x = xe is an equilibrium point, i.e., f(xe) = 0.

• Definition 3.1 The equilibrium point x = xe is said to be

stable if for each ϵ > 0, ∃δ(ϵ) > 0

∥x(0)− xe∥ < δ ⇒ ∥x(t)− xe∥ < ϵ ∀t ≥ t0

otherwise, the equilibrium point is said to be unstable.

• Bounded input bounded output stability

• This is the weakest form of stability.



Convergent, Asymptotical Stability 4

• Definition 3.2 The equilibrium point x = xe is said to be

convergent if for any given ϵ1 > 0, ∃δ1(ϵ1) > 0 and ∃T such

that

∥x(0)− xe∥ < δ1 ⇒ ∥x(t)− xe∥ < ϵ1 ∀t ≥ t0 + T.

• For a convergent equilibrium point we can say

lim
t→∞

x(t) = xe.

• Definition 3.3 The equilibrium point x = xe is said to be

asymptotically stable if it is both stable and convergent.



Exponential Stability 5

• Definition 3.4 The equilibrium point x = xe is said to be

locally exponentially stable if there exist two real constants

α, λ > 0 such that

∥x(t)− xe∥ < α∥x(0)− xe∥e−λt ∀t > 0.

• Exponential stability is the strongest form of stability.

• Exponential stability implies asymptotic stability, however,

the converse is not true.

• Global stability requires more rigorous discussion.



Exponential Stability of Linear Systems 6

• For linear systems they are globally exponentially stable if

it is stable.

• Shift the equilibrium point and hereafter we discuss the sta-

bility of the origin.



Positive definate function



Positive Definite Functions 8

• Definition 3.5 A function V : D → R is said to be positive

semi definite in D if it satisfies the following conditions:

(i) 0 ∈ D and V (0) = 0.

(ii) V (x) ≥ 0, ∀x in D − {0}

• V : D → R is said to be positive definite in D if condition

(ii) is replaced by (ii’).

(ii’) V (x) > 0, ∀x in D − {0}

• Finally, V : D → R is said to be negative definite (semi

definite) in D if −V is positive definite (semi definite).



Example of Positive Definite Function 9

• The simplest and most important class of positive definite
function is defined as follows:

V (x) = xTQx : Rn → R, Q ∈ Rn×n, Q = QT

Since Q is symmetric, we know that its eigenvalues are all
real.

V is positive definite ⇔ λi > 0, ∀i = 1, . . . , n

V is positive semi definite ⇔ λi ≥ 0, ∀i = 1, . . . , n

V is negative definite ⇔ λi < 0, ∀i = 1, . . . , n

V is positive semi definite ⇔ λi ≤ 0, ∀i = 1, . . . , n

Thus for example:

V (x) = ax21 + bx22 = [x1 x2 ]

[
a 0

0 b

] [
x1
x2

]
> 0, ∀a, b > 0.



Positive definite functions (PDFs) 10

• PDFs constitute the basic building block of the Lyapunov

theory.

• PDFs can be seen as an abstraction of the total energy

stored in the system.

• All of the Lyapunov stability theorems focus on the study

of the time derivative of a positive definite function along

the trajectory of ẋ = f(x).



Time Derivative along the Trajectory 11

• Time derivative of V along the trajectory:

1. Trajectory

ẋ = f(x)

2. Time derivative

V̇ (x) =
dV

dt
=

∂V

∂x

dx

dt
= ∇V f(x)

= [ ∂V
∂x1

∂V
∂x2

· · · ∂V
∂xn

]


f1(x)

f2(x)
...

fn(x)





Lie derivative



Lie derivative 13

• Definition 3.6 Let V : D → R and f : D → Rn. The Lie

derivative of V along f , denoted by LfV , is defined by

LfV (x) =
∂V

∂x
f(x).

Thus according to this definition, we have that

V̇ (x) =
∂V

∂x
f(x) = ∇V f(x) = LfV (x).



Example: Lie derivative 14

• Example: Let

ẋ =

[
ax1

bx2 + cosx1

]

and define V = x21 + x22. Thus we have

V̇ (x) = LfV (x) = [ 2x1 2x2 ]

[
ax1

bx2 + cosx1

]
= 2ax21 +2bx22 +2x2 cosx1.

• It is clear from this example that the V̇ (x) depends on the

system’s equation f(x) and thus it will be different for dif-

ferent systems, even if V is the same.



Lyapunov stability



Lyapunov Stability Theorem 16

• Theorem 3.1 Let x = 0 be an equilibrium point of ẋ =

f(x), f : D → Rn, and let V : D → R be a continuously

differentiable function such that

(i) V (0) = 0,

(ii) V (x) > 0 in D − {0}
(iii) V̇ (x) ≤ 0 in D − {0},
then x = 0 is stable.

• The theorem implies that a sufficient condition for the

stability of the equilibrium point x = 0 is that there exists

a continuously differentiable positive definite function V (x)

such that V̇ (x) is negative semi definite in a neighborhood

of x = 0.



Lyapunov’s Asymptotic Stability Theorem 17

• Theorem 3.2 Let x = 0 be an equilibrium point of ẋ =

f(x), f : D → Rn, and let V : D → R be a continuously

differentiable function such that

(i) V (0) = 0,

(ii) V (x) > 0 in D − {0}
(iii) V̇ (x) < 0 in D − {0},
thus x = 0 is asymptotically stable.



Proof of theorem 3.1 18

• Choose r > 0 such that the closed ball

Br = {x ∈ Rn : ∥x∥ ≤ r}

is contained in D. Let

α = min
∥x∥=r

V (x).

Now choose β ∈ (0, α) and denote

Ωβ = {x ∈ Br : V (x) ≤ β}.

Thus, by construction, Ωβ ⊂ Br. Now suppose that x(0) ∈
Ωβ. By assumption (iii) of the theorem we have that

V̇ (x) ≤ 0 ⇒ V (x) ≤ V (x(0)) ≤ β ∀t ≥ 0.



Proof of theorem 3.1 (Cont.) 19

• It then follows that any trajectory starting in Ωβ at t = 0

stays inside Ωβ for all t ≥ 0. Moreover, by the continuity of

V (x) it follows that ∃δ > 0 such that

∥x∥ < δ ⇒ V (x) < β (Bδ ∈ Ωβ ∈ Br).

Thus we have

∥x(0)∥ < δ ⇒ x(t) ∈ Ωβ ∈ Br ∀t > 0

and then

∥x(0)∥ < δ ⇒ ∥x(t)∥ < r ≤ ϵ ∀t ≥ 0

which means that the equilibrium x = 0 is stable.



Lyapunov function 20

• Finding a positive definite function is easy because V is

independent of the dynamics of the differential equation

under study.

• While V̇ depends on this dynamics.

• For this reason, when a function V is proposed as possible

candidate to prove the stability, V is said to be a Lyapunov

function candidate.

• If in addition V̇ happens to be negative definite, then V is

said to be a Lyapunov function for that particular equilib-

rium point.



Example: Pendulum without friction 21

mg

θ

l

• Dynamical equation:

mℓθ̈ +mg sin θ = 0

• State variables: x1 = θ, x2 = θ̇

ẋ1 = x2

ẋ2 = −
g

ℓ
sinx1

• Total Energy of the system

E = K + P =
1

2
m(ωℓ)2 +mgh

=
1

2
mℓ2x22 +mgl(1− cosx1)



Example (Cont.) 22

mg

θ

l

• Define:

V (x) = E =
1

2
mℓ2x22+mgl(1−cosx1)

• Clearly V (0) = 0, however, we have

V (x) = 0 whenever x = [x1, x2]
T =

[2kπ,0]T . Thus V is not positive

definite.

• Restrict the domain:

x1 ∈ (−2π,2π),

i.e.,

V : D → R, D = [(−2π,2π),R]T

• With this restriction, V is positive

definite.



Example (Cont.) 23

mg

θ

l

• Evaluate the derivative

V (x) =
1

2
mℓ2x22 +mgl(1− cosx1)

V̇ (x) = ∇V f(x) = [ ∂V
∂x1

∂V
∂x2

]

[
f1(x)

f2(x)

]

= [mgℓ sinx1 mℓ2x2 ]

[
x2

−g
ℓ sinx1

]
= mgℓx2 sinx1 −mgℓx2 sinx1 = 0

• Thus V̇ (x) = 0 and the origin is stable.



Example: Pendulum with friction 24

mg

θ

l

• Dynamical equation:

mℓθ̈ +mg sin θ + kℓθ̇ = 0

• State variables: x1 = θ, x2 = θ̇

ẋ1 = x2

ẋ2 = −
g

ℓ
sinx1 −

k

m
x2

• x = [x1, x2]
T = [0,0]T is an equilibrium

point.

• Total Energy:

V (x) =
1

2
mℓ2x22 +mgl(1− cosx1)



Example (Cont.) 25

• Evaluate the derivative

V (x) =
1

2
mℓ2x22 +mgl(1− cosx1)

V̇ (x) = [mgℓ sinx1 mℓ2x2 ]

[
x2

−g
ℓ sinx1 − k

mx2

]
= −kℓ2x22

• V̇ (x) is negative semi-definite.

• The origin is stable but cannot conclude asymptotic stability.

• The result is disappointing since we know that it is asymp-

totically stable.

• The Lyapunov theorem is sufficient condition.



LaSalle’s Asymptotic Stability Theorem 26

• Theorem 3.6 Let x = 0 be an equilibrium point of

ẋ = f(x), f : D → Rn,

and let V : D → R be a continuously differentiable function

such that

(i) V (0) = 0,

(ii) V (x) > 0 in D, where we assume that 0 ∈ D

(iii) V̇ (x) ≤ 0 in a bounded region R ⊂ D

(iv) V̇ (x) does not vanish identically along any trajectory in

R other than x = 0.

then x = 0 is asymptotically stable.



Example 27

• For the pendulum with friction, we know

V (x) =
1

2
mℓ2x22 +mgl(1− cosx1)

V̇ (x) = −kℓ2x22

• V̇ (x) is negative semi-definite in D = [(−π, π),R]T .
• Suppose a closed region

R = [(−π, π), (−a, a)]T for any a > 0.

• Check the condition (iv).

V̇ = 0 ⇒ 0 = −kℓ2x22 ⇔ x2 = 0

thus, x2 = 0, ∀t. This also conclude that ẋ2 = 0.



Example (Cont.) 28

• State equation:

ẋ1 = x2

ẋ2 = −
g

ℓ
sinx1 −

k

m
x2

• x2 = 0 and ẋ2 = 0, thus sinx1 = 0.

• Restricting x1 ∈ (−π, π), sinx1 = 0 if and only if x1 = 0.

• It follows that V̇ (x) does not vanish identically along any

solution other than x = 0, and the origin is locally asymp-

totically stable.



Assignments 29

1. Build a model (select one) from the examples given in the

chapter 3 of the text.

• Cruise control

• Bicycle dynamics

• Bicycle steering

• Operational amplifier circuit

• Operational amplifier oscillator

• Congestion control using RED

• Atomic force microscope with piezo tube

• Drug administration)

• Population dynamics

• Fisheries management



2. Example 4.1: Solve the following equation with x0 = [0,1]
using MATLAB, where

q̈ +2ζω0q + ω2
0q = 0

and ζ < 1, ω0 = 1, x = [q, q̇] (for several ζ).

3. Example 4.9: Consider a nonlinear system

ẋ =
2

x+1
− x.

(a) Find its equilibrium.

(b) Shift the equilibrium to 0 and derive the new system
equation.

(c) Using Lyapnov function show it it locally asymptotically
stable.


