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Nonlinear Systems 2

• State x(t), Input u(t), Output y(t)

x(t) =

 x1(t)
...

xn(t)

 , u(t) =

 u1(t)
...

up(t)

 , y(t) =

 y1(t)
...

ym(t)


• System: A set of first-order ordinary differential equations

ẋ(t) = f(x(t), t, u(t))

y(t) = h(x(t), t, u(t))

i.e., (hereafter, (t) may be omitted)

ẋ1 = f1(x1, . . . , xn, t, u1, . . . , up)
...

ẋn = fn(x1, . . . , xn, t, u1, . . . , up)

y1 = h1(x1, . . . , xn, t, u1, . . . , up)
...

ym = hm(x1, . . . , xn, t, u1, . . . , up)



Examples of Nonlinear Systems 3

• Unforced system: Input u is identically zero, i.e., u(t) = 0

ẋ = f(x, t,0) = f(x, t)

• Autonomous system: f(x, t) is not a function of time

ẋ = f(x)

Autonomous systems are invariant to shifts in the time ori-

gin, i.e., changing the time variable from t to τ = t−α does

not change the right-hand side of the equation.



Example 4

• Input: u, Output: x

• Consider a system:

mẍ+ d(x, ẋ) + k(x) = u

• x1 = x, x2 = ẋ

ẋ1 = x2

ẋ2 = −
d(x1, x2)

m
−

k(x1)

m
+

1

m
u

i.e., the left-hand side should be first derivative of x, the

right-hand side should not contain ẋ.



Example 5

mg

θ

l

• Dynamical equation:

mlθ̈ + klθ̇ +mg sin θ = 0

• State variables: x1 = θ, x2 = θ̇

ẋ1 = x2

ẋ2 = −
g

ℓ
sinx1 −

k

m
x2
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Equilibrium Points 7

• Definition: A point x = xe is said to be an equilibrium

point of the autonomous system

ẋ = f(x)

if it has the property that whenever the state of the system

starts at xe, it remains at xe for all future time

x(t0) = xe ⇒ x(t) ≡ xe, ∀t ≥ t0,

i.e.,

ẋ = 0.

• Property: The equilibrium points are the real roots of the

equation f(xe) = 0.



Example of Equilibrium Points 8

• Consider the following system where r is a parameter.

ẋ = −r + x2

1. If r > 0, the system has two equilibrium points x = ±
√
r.

2. If r = 0, both of the equilibrium points collapse, the

equilibrium point is x = 0.

3. If r < 0, then the system has no equilibrium points.



First-Order Autonomous Systems I 9

ẋ = −r + x2 (r > 0)

When ẋ > 0, the trajectories move to the right, and vice versa.

Thus xe = −
√
r is attractive, xe =

√
r is repelling.
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First-Order Autonomous Systems II 10

ẋ = cosx

where ẋ = 0 are equilibrium points.
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Second-Order Autonomous Systems 11

ẋ1 = r − x21 (r = 0.5)

ẋ2 = −x2

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5



Second-Order Autonomous Systems 12

ẋ1 = r − x21 (r = 0.5)

ẋ2 = −x2

where (
√
r,0) is stable, (−

√
r,0) is unstable.
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Second-Order Autonomous Systems 13

[x, y]= meshgrid(-1.5:0.1:1.5, -1.5:0.1:1.5);

global r;

r = 0.5;

px=r-x.*x;

py=-y;

quiver(x,y,px,py,1.5);

[t,xx]=ode45(@func_bifur,[0 1.5],[0;1]);

plot(xx(:,1),xx(:,2),’go-’);

-----

function dx = func_bifur(t, x)

global r;

dx = [r-x(1)*x(1); -x(2)];

end



Pendulum 14

mg

θ

l

• Dynamical equation:

mlθ̈ + klθ̇ +mg sin θ = 0

• State variables: x1 = θ, x2 = θ̇

ẋ1 = x2

ẋ2 = −
g

l
sinx1 −

k

m
x2

• Equilibrium points

0 = x2

0 = −
g

l
sinx1 −

k

m
x2

(x1, x2) = (nπ,0), n = 0,±1, . . .
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Second-Order Systems: Phase-Plane 16

• Consider the system

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

• The solution of the differential equation with an initial con-

dition x0 = [x10, x20] is called a trajectory from x0.

• The trajectory in x1–x2 plane is called phase-plane.

• f(x) in

ẋ =

[
ẋ1
ẋ2

]
=

[
f1(x1, x2)
f2(x1, x2)

]
= f(x)

is called a vector field.



Vector Field Diagram 17

• To each point x∗ in the plane we can assign a vector with

amplitude and direction of f(x∗).
• For easy visualization we can represent f(x) as a vector

based at x, i.e., we assign to x the directed line segment

from x to x+ f(x).

• Repeating this operation at every point in the plane, we

obtain a vector field diagram.
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Vector Field Diagram 19

ẋ1 = x2

ẋ2 = −x21 − x2
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Vector Field Diagram of Pendulum 20

ẋ1 = x2 (g = 10, l = 1)

ẋ2 = −
g

l
sinx1 (0 ≤ t ≤ 5)
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Pendulum with Friction 21

ẋ1 = x2 (g = 10, l = 1, k = 0.5,m = 1)

ẋ2 = −
g

l
sinx1 −

k

m
x2 (0 ≤ t ≤ 5)
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Limit Cycles 23

• Oscillations: Characteristics of higher-order nonlinear sys-

tems

• A system oscillates when it has a nontrivial periodic solution

(not the one found in LTI imaginary case).

∃t0 > 0, ∀t ≥ t0, x(t+ T ) = x(t)

• Stable, self-excited oscillations: limit cycles.



Example of Limit Cycles (Van der Pol) 24

• Consider the following system:

ÿ − µ(1− y2)ẏ + y = 0 µ > 0

• Define x1 = y, and x2 = ẏ

ẋ1 = x2

ẋ2 = −x1 + µ(1− x21)x2

• Note that if µ = 0, the resulting system is[
ẋ1
ẋ2

]
=

[
0 1
−1 0

] [
x1
x2

]
which is LTI and has circular trajectories.



Example of Limit Cycles (Van der Pol) 25

ẋ1 = x2 (0 ≤ t ≤ 8)

ẋ2 = −x1 + µ(1− x21)x2 (µ = 1)
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Example of Limit Cycles (Van der Pol) 26
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Example of Limit Cycles (Van der Pol) 27
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Example of Limit Cycles (Van der Pol) 28
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Example of Limit Cycles (Van der Pol) 29

[x, y]= meshgrid(-4:0.4:4, -4:0.4:4);

global mu; mu=1;

px=y;

py=-x+mu*(1-x.*x).*y;

quiver(x,y,px,py,3);

[t,xx]=ode45(@vdp,[0 8],[-1;3]);

plot(xx(:,1),xx(:,2),’go-’);

-----

function dx=vdp(t,x)

global mu;

dx=[x(2); -x(1)+mu*(1-x(1)*x(1))*x(2)];

end



Van der Pol Limit Cycle 30

• There is only one isolated orbit (Limit Cycle).
• All trajectories converge to this trajectory as t → ∞, i.e., it

is a stable limit cycle.
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Van der Pol Limit Cycle (Unstable) 31
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Higer-Order Systems 33

• Chaos: Consider the following system of nonlinear equa-

tions (Ed Lorenz, 1963)

ẋ = σ(y − x)

ẏ = rx− y − xz

ż = xy − bz

where σ, r, b > 0.



Lorenz Attractor 34



Example of Limit Cycles (Lorenz attractor) 35

r = 2;

c = 2;

[t,xyz] = ode45(’lorenz’,[0,30],[5;3;1]);

x = xyz(:,1); xmin = min(x); xmax = max(x);

y = xyz(:,2); ymin = min(y); ymax = max(y);

z = xyz(:,3); zmin = min(z); zmax = max(z);

plot3(x(1:i),y(1:i),z(1:i),...

x(1),y(1),z(1),’or’,...

x(i),y(i),z(i),’ob’);

axis([xmin xmax ymin ymax zmin zmax]);

xlabel(’x’); ylabel(’y’); zlabel(’z’);



Example of Limit Cycles (Lorenz attractor) 36

function xyz = lorenz(t,y)

s = 10; b = 8/3; r = 28;

xyz = [ -s .* y(1) + s .* y(2)

r .* y(1) - y(2) - y(1) .* y(3)

y(1) .* y(2) - b .* y(3) ];

end
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• For each of the following systems, (i) find the equilibrium

points, (ii) plot the phase portrait, and (iii) classify each

equilibrium point as stable or unstable.

(a)

{
ẋ1 = x1 − x31 + x2
ẋ2 = −x2

(b)

{
ẋ1 = −x2 +2x1(x

2
1 + x22)

ẋ2 = x1 +2x2(x
2
1 + x22)

(c)

{
ẋ1 = cosx2
ẋ2 = sinx1


