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Today’s topics 1

• Global Stability

• Analysis of Linear Time-Invariant Systems

• Lyapunov’s indirect method

• Exercises

• Feedback Systems

• Design of Feedback Law

• Backstepping



Global Stability



Asymptotic Stability 3

• Local Stability: The equilibrium xe is said to be stable if

∥x(t)− xe∥ < ϵ, provided that ∥x(0)− xe∥ < δ

Starting from δ neighbor of xe, the solution will remain ϵ

neighbor of xe.

• Local Asymptotic Stability: The solution not only stays

within ϵ but also converges to xe in the limit.



Asymptotic Stability in the Large 4

• When the equilibrium is asymptotically stable, it is often

important to know under what conditions an initial state

will converge to the equilibrium point.

• In the best possible case, any initial state will converge to

the equilibrium point.

• An equilibrium point that has this property is said to be

globally asymptotically stable, or asymptotically stable

in the large.



Asymptotic Stability in the Large 5

• Definition 3.8: Let V : D → R be a continuously differen-

tiable function. Then V (x) is said to be radially unbounded

if

V (x) → ∞ as ∥x∥ → ∞

• Theorem 3.8 Global Asymptotic Stability: Let x = 0

be an equilibrium point of ẋ = f(x), f : D → Rn, and let

V : D → R be a continuously differentiable function such

that

(i) V (0) = 0

(ii) V (x) > 0, ∀x ̸= 0

(iii) V (x) is radially unbounded

(iv) V̇ < 0, ∀x ̸= 0

then x = 0 is globally asymptotically stable.



Example 6

ẋ1 = x2 − x1(x
2
1 + x22)

ẋ2 = −x1 − x2(x
2
1 + x22)
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Example 7

• Consider the following system

ẋ1 = x2 − x1(x
2
1 + x22)

ẋ2 = −x1 − x2(x
2
1 + x22)

• To study the equilibrium point at the origin, we define

V (x) = x21 + x22. Then we have

V̇ (x) =
∂V

∂x
f(x)

= 2[x1, x2][x2 − x1(x
2
1 + x22),−x1 − x2(x

2
1 + x22)]

T

= −2(x21 + x22)
2.

• Thus, V (x) > 0 and V̇ < 0 for all x. Moreover, since V

is radially unbounded, it follows that the origin is globally

asymptotically stable.



Example 4.4 Inverted pendulum 8

• With assumption that mgℓ/Jt = 1 and m/Jt = 1, the dy-

namics (equation (2.10)) become

dx

dt
=

[
x2

sinx1 − cx2 + u cosx1

]
, where x =

[
x1
x2

]
=

[
θ
θ̇

]
• This is a nonlinear time-independent system of second order.

• The equilibrium points are

xe =

[
±nπ
0

]



Inverted pendulum phase portrait 9
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Inverted pendulum phase portrait 10
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Analysis of Linear Time-Invariant

Systems



Stability of LTI System 12

• LTI system

ẋ = Ax, A ∈ Rn×n, x(0) = x0

is stable if and only if

all eigenvalues λ of A satisfy Re λi ≤ 0 (i=1,. . . ,n).

• The equilibrium point x = 0 is exponentially stable if and
only if Re λi < 0 for all i.

• Remember that for nonlinear systems

Exponentially stable → Asymptotycally stable → Stable

but for linear systems, 0 is the only one equilibrium point
and if it is stable then it is exponentially stable.



Stability of LTI System 13

• Lyapunov function candidate

V (x) = xTPx, P ∈ Rn×n is positive definite and symmetric

V̇ = ẋTPx+ xTP ẋ = xT (ATP + PA)x

• V is Lyapunov function if Q is positive definite

Q = −(ATP + PA)

and this equation is called Lyapnov equation.



Stability Check by Lyapunov 14

(i) Choose an arbitrary symmetric, positive definite matrix Q.

(ii) Find P that satisfies Q = −(ATP +PA) and verify that P is

positive definite.



Lyapunov Theorem for Linear Systems 15

• Theorem 3.10: The eigenvalues λi of a matrix A sat-

isfy Re λi < 0 if and only if for any given symmetric pos-

itive definite matrix Q there exists a unique positive defi-

nite symmetric matrix P satisfying the Lyapunov equation

Q = −(ATP + PA).



Lyapunov’s indirect method

Stability analysis via linear

approximation



Linearization of Nonlinear Systems 17

• Consider the nonlinear system

ẋ = f(x), f : D → Rn

and assume that x = xe ∈ D is an equilibrium point.
• Taylor series expansion about the equilibrium

f(x) = f(xe) +
∂f

∂x

∣∣∣∣
x=xe

(x− xe) + h.o.ts

• Neglecting the h.o.ts and recalling f(xe) = 0, we have

f(x) =
∂f

∂x

∣∣∣∣
x=xe

(x− xe)

• Now defining

x̄ = x− xe, ˙̄x = ẋ, A =
∂f

∂x

∣∣∣∣
x=xe

=
∂f

∂x

∣∣∣∣
x̄=0

we have ˙̄x = Ax̄.



Lyapunov’s Indirect Method 18

• Theorem 3.11 Let x = 0 be an equilibrium point for a

nonlinear system ẋ = f(x). Assume that A is a matrix

obtained by liniarization. Then if the eigenvalues λi of the

matrix A satisfy Re λi < 0, the origin is an exponentially

stable equilibrium point.



Exercises 19

• Consider the following dynamical system:

(a)

{
ẋ1 = x2
ẋ2 = −x1 + x31 − x2

(b)

{
ẋ1 = x2
ẋ2 = x1 − 2 tan−1(x1 + x2)

(c)

{
ẋ1 = 2

3x2
ẋ2 = −x1 + x2(1− 3x21 − 2x22)

(a) Find all of its equilibrium points.
(b) Find the linear approximation about each equilibrium point,

find the eigenvalues of the resulting A matrix and classify
the stability of each equilibrium point.

(c) Construct the phase portrait of each nonlinear system
and discuss the qualitative behavior of the system.

(d) Construct the phase portrait of the linearized approxima-
tions. Discuss the “accuracy” of the approximations.



Feedback Systems



Feedback Systems 21

• Consider the system

ẋ = f(x, u)

and assume that the origin x = 0 is an equilibrium point of

the unforced system ẋ = f(x,0).

• Suppose that input u is obtained using a state feedback

u = ϕ(x).

• Substituting u into ẋ yields a unforced system

ẋ = f(x, ϕ(x))



Feedback Linearization 22

• Example 5.1 Consider the first order system

ẋ = ax2 + u

Is this system stable?

• We look for a state feedback u = ϕ(x) that make the equi-

librium point at the origin “asymptotically stabe.”

• An obvious way is to cancels the nonlinear term

u = −ax2 − x

to obtain

ẋ = −x

which is linear and grobally asymptotically stable.



Feedback Linearization 23

• It is based on exact cancellation of the nonlinear term ax2.

• This is undesirable since in practice system parameters such

as a are never known exactly.

• Even if the parameters are not exact, the system can be

stabilized.

• But the stability is local because of the presence of the term

(a− ā)x2, where a is the true value and ā is the actual value

used in the feedback law.

• Cancelling “all” nonlinear terms may not be a good idea

because the nonlinearities are not necessarily bad.



Feedback Linearization 24

• Example 5.2 Consider the system given by

ẋ = ax2 − x3 + u

and exact cancellation law is

u = u1 = −ax2 + x3 − x

which leads to

ẋ = −x.



Feedback Linearization 25

• The presence of terms of the form xi with i even (偶数
の i) on a dynamical equation is never desirable. Indeed,
even powers of x do not discriminate sign of the variable x

and thus have a destabilizing effect that should be avoided
whenever possible.

• Terms of the form −xj with j odd (奇数の j), on the other
hand, greatly contribute to the feedback law by providing
additional damping for large values of x and are usually ben-
eficial.

• At the same time, notice that the cancellation of the term
x3 was achieved by incorporating the term x3 in the feed-
back law. The presence of this term in u can lead to very
large values of the input. In practice it may cause actuator
saturation. The presence of the term x3 on the input u is
not desirable.



Design of Feedback Law



Design of Feedback Law 27

• Given the system

ẋ = f(x, u), x ∈ Rn, u ∈ R, f(0,0) = 0

we proceed to find a feedback law of the form

u = ϕ(x)

such that the feedback system

ẋ = f(x, ϕ(x))

has an asymptotically stable equilibrium at the origin.



Design Policy 28

• To show that this is the case, we will construct a function

V1(x) : D → R satisfying

(i) V1(0) = 0, and V1(x) is positive definite in D − {0}.
(ii) V̇1(x) is negative definite along the solutions of ẋ =

f(x, ϕ(x)). Moreover, there exist a positive definite func-

tion V2(x) : D → R+ such that

V̇1(x) =
∂V1
∂x

f(x, ϕ(x)) ≤ −V2(x), ∀x ∈ D

• Clearly, if D = Rn and V1 is radially unbounded, then the

origin is globally asymptotically stable.



Example 29

• Consider again the system

ẋ = ax2 − x3 + u

• Define V1(x) = 1
2x

2 and compute V̇ to obtain

V̇1 = x · f(x, u) = ax3 − x4 + xu.

• In the previous example we chose u = u1 = −ax2 + x3 − x.

• In this case, we have

V̇1 = −x2 = −V2(x)

and requirement (ii) above is satisfied.



Example 30

• When we are not happy with the previous example, we mod-
ify the function V2 as follows

V̇1 = ax3 − x4 + xu ≤ −V2(x) = −(x4 + x2)

• In this case we must have

ax3 − x4 + xu ≤ −(x4 + x2)

xu ≤ −x2 − ax3 = −x(x+ ax2)

• The above condition is accomplished by choosing

u = −ax2 − x.

• With this input function u, we obtain

ẋ = ax2 − x3 + u = −x− x3

which is asymptotically stable. The result is global since V1
is radially unbounded and D = R.



Backstepping



Integrator Backstepping 32

• Consider a system

ẋ = f(x) + g(x)ξ

ξ̇ = u.

Here x ∈ Rn, ξ ∈ R and [x, ξ]T ∈ Rn+1

• The function u ∈ R is the control input and the functions
f, g : D → Rn are assumed to be smooth.

• It has a cascade connection structure.

-
u ∫

-
ξ

g(x) -
+i -

∫ rx -

�f(·)

6+



Assumptions 33

• Assumptions

(i) The function f satisfies f(0) = 0. Thus the origin is an

equilibrium point of the subsystem ẋ = f(x).

(ii) The first subsystem can be stabilized by a state feedback

ξ = ϕ(x).

• Condition (ii) is actually as follows. We assume that there

exists a state feedback control law of the form

ξ = ϕ(x), ϕ(0) = 0

and a Lyapunov function V1 : D → R+ such that

V̇1(x) =
∂V1
∂x

[f(x) + g(x)ϕ(x)] ≤ −Va(x) ≤ 0 ∀x ∈ D

where Va : D → R+ is a positive semidefinite function in D.



Backstepping 34

• An equivalent system

ẋ = f(x) + g(x)ϕ(x) + g(x)(ξ − ϕ(x))

ξ̇ = u.

-
u ∫

-
ξ +i

−ϕ(x)

6+
- g(x) -

+i -

∫ rx -

�f(·) + g(·)ϕ(·)

6+



Backstepping 35

• Define

z = ξ − ϕ(x)

ż = ξ̇ − ϕ̇(x) = u− ϕ̇(x)

where

ϕ̇ =
∂ϕ

∂x
ẋ =

∂ϕ

∂x
ẋ (f(x) + g(x)ξ)

• This change of variables can be seen as backstepping −ϕ(x)
through the integrator.

-
u+i

−ϕ̇(x)

6+
-

∫
-

z
g(x) -

+i -

∫ rx -

�f(·) + g(·)ϕ(·)

6+



Equivalent System 36

• Defining v = ż the resulting system is

ẋ = f(x) + g(x)ϕ(x) + g(x)z

ż = v.

(i) The system is equivalent to the previous system.
(ii) The system is the cascade connection of two subsys-

tems. However it incorporates the stabilizing state feed-
bacd ϕ(·) and is asymptotically stable when the input is
zero.

-
v = ż ∫

-
z

g(x) -
+i -

∫ rx -

�f(·) + g(·)ϕ(·)

6+



Stabilization 37

• To stabilize the system

ẋ = f(x) + g(x)ϕ(x) + g(x)z

ż = v

consider a Lyapunov function candidete of the form

V = V (x, ξ) = V1(x) +
1

2
z2.

We have

V̇ =
∂V1
∂x

(f(x) + g(x)ϕ(x) + g(x)z) + zż

=
∂V1
∂x

f(x) +
∂V1
∂x

g(x)ϕ(x) +
∂V1
∂x

g(x)z + zv.



Stabilization 38

• We can choose

v = −
(
∂V1
∂x

g(x) + kz

)
, k > 0

• Thus

V̇ =
∂V1
∂x

f(x) +
∂V1
∂x

g(x)ϕ(x)− kz2

=
∂V1
∂x

(f(x) + g(x)ϕ(x))− kz2

≤ −Va(x)− kz2

• Now we can conclude that x = 0, z = 0 is asymptotically

stable.

• Moreover, since z = ξ − ϕ(x) and ϕ(0) = 0 by assumption,

the origin of the original system x = 0, ξ = 0 is also asymp-

totically stable.



Stabilization 39

• If all the conditions hold globally and V1 is radially un-

bounded, then the origin is globally asymptotically stable.


