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Today’s topics

e Stability notations of nonlinear systems
e Lie derivative

e Lyapunov stability

e Lyapunov’s indirect method



Stability notations of nonlinear systems



Stability 3

e Consider the autonomous system

= f(x) f:D—R"

where D is an open and connected subset of R™.
e Assume that x = x¢ is an equilibrium point, i.e., f(ze) = 0.
e Definition 3.1 The equilibrium point x = z. is said to be
stable if for each € > 0, 35(¢) > O

[2(0) —zell <& = la(t) —wel| <€ VE>tg

otherwise, the equilibrium point is said to be unstable.
e [ his is the weakest form of stability.



Convergent, Asymptotical Stability 4

e Definition 3.2 The equilibrium point x = z. is said to be
convergent if for any given e€; > 0, 361(e7) > 0 and 3IT such
that

|z(0) —ze|]| <61 = |x(t) —ze|| <e1 VE>tg+T.

e FOor a convergent equilibrium point we can say
t—o0
e Definition 3.3 The equilibrium point x = z. is said to be
asymptotically stable if it is both stable and convergent.



Exponential Stability 5

Definition 3.4 The equilibrium point £ = z, is said to be
locally exponentially stable if there exist two real constants
a, A > 0 such that

|z(t) — ze|| < af|z(0) — ze|le™ ™ Vit > 0.

Exponential stability is the strongest form of stability.
Exponential stability implies asymptotic stability, however,
the converse is not true.

For linear systems they are exponentially stable if it is stable.
Shift the equilibrium point and hereafter we discuss the sta-
bility of the origin.



Lie derivative



Positive Definite Functions 4

e Definition 3.5 A function V : D — R is said to be positive
semi definite in D if it satisfies the following conditions:
(i) 0e D and V(0) = 0.

(i) V() >0, Vzin D-—{0}
V. D — R is said to be positive definite in D if condition
(ii) is replaced by (ii").

(ii") V(x) >0, Vzin D—{0}

Finally, V : D — R is said to be negative definite (semi
definite) in D if —V is positive definite (semi definite).



Example 8

e [ he simplest and most important class of positive definite
function is defined as follows:

V(z) =2'Qr :R" =R, QeR™" Q=0

Since @ is symmetric, we know that its eigenvalues are all
real.

V is positive definite & M\, >0,Vi=1,...,n
V' is positive semi definite < M\, >0,Vi=1,...,n
V' is negative definite & X\, <0,Vi=1,...,n
V is positive semi definite & M\, <0,Vi=1,...,n

Thus for example:

O
V(z) = az? +bxs =[z1 o] . "l >0, Va,b>0.
O b |xo



Positive definite functions (PDFs5s) 9

PDFs constitute the basic building block of the Lyapunov
theory.

PDFs can be seen as an abstraction of the total energy
stored in the system.

All of the Lyapunov stability theorems focus on the study
of the time derivative of a positive definite function along
the trajectory of z = f(x).



Time Derivative along the Trajectory

10

e [ ime derivative of V along the trajectory:
1. Trajectory

z = f(z)
2. Time derivative
. AY4 oV dx
V(ZB) — E a—a — VVf(m) _
[ f1(x)
_ oV av 1 | f2(x)
— [ax1 e %] )
_fﬁ(x)_




Lie derivative 11

e Definition 3.6 Let V : D — R and f: D — R"™ The Lie
derivative of V along f, denoted by LfV, is defined by

LeV(z)= g—‘;f(:c)

Thus according to this definition, we have that

V(@) =9 f@) = VV i) = LV (@),



Example: Lie derivative 12

e Example: Let

. axq
€T =
bxro + COSxq

and define V = z% + x3. Thus we have

V()

arq
L —
fV(ac) [2:[31 2:[32] [bmg —|— COS$1]

— 20,:13% -+ be% + 225 COS x7.

e It is clear from this example that the V(z) depends on the
system’s equation f(x) and thus it will be different for dif-
ferent systems, even if V is the same.



Lyapunov stability



Lyapunov Stability Theorem 14

e Theorem 3.1 Let = 0 be an equilibrium point of z =
f(x), f: D — R" and let V : D — R be a continuously
differentiable function such that
(i) V(0) =0,

(i) V(z) >0 in D —{0}

(iii) V() <0 in D —{0},
then £ = 0O is stable.

e The theorem implies that a sufficient condition for the
stability of the equilibrium point x = 0O is that there exists
a continuously differentiable positive definite function V(x)
such that V(z) is negative semi definite in a neighborhood
of x = 0.



Lyapunov’s Asymptotic Stability Theorem 1°

e Theorem 3.2 Let = 0 be an equilibrium point of z =
f(x), f: D — R" and let V : D — R be a continuously
differentiable function such that
(i) V(0) =0,

(i) V(z) >0 in D —{0}

(iii) V() <0 in D — {0},

thus £ = 0 is asymptotically stable.



Proof of theorem 3.1 16

e Choose r > 0 such that the closed ball
Br={x e R": ||z|| <r}
IS contained in D. Let

a= min V(x).
|z||=r

Now choose B € (0,«) and denote

Qg = {x € Br: V(z) <8}

Thus, by construction, Q3 C Br. Now suppose that z(0) ¢
Qg. By assumption (iii) of the theorem we have that

V(z) <0 = V(z)<V((0)<B Vt>O0.



Proof of theorem 3.1 (Cont.) 17

e It then follows that any trajectory starting in Qﬁ att = 0O
stays inside QB for all t > 0. Moreover, by the continuity of
V(x) it follows that 36 > 0 such that

|z]| <6 = V(x)<B (BseS2g¢€ Br).

Thus we have

|lz(0)[| <d = z(t)eQpeBr Vt>0
and then
l2()| <5 = Ja@®|<r<e Vt>0

which means that the equilibrium x = O is stable.



Lyapunov function 18

e Finding a positive definite function is easy because V is
independent of the dynamics of the differential equation
under study.

e While V depends on this dynamics.

e For this reason, when a function V is proposed as possible
candidate to prove the stability, V is said to be a Lyapunov
function candidate.

e If in addition V happens to be negative definite, then V is
said to be a Lyapunov function for that particular equilib-
rium point.



Example: Pendulum without friction 19

e Dynamical equation:

mel + mgsind = 0

e State variables: 1 = 6,20 =0

T 2y,

g .
——SINx
E 1

i)

e [otal Energy of the system

1
F = K+ P= Em(wﬁ)z + mgh

1
= §m€2x% + mgl(1l — cosxzy)



Example (Cont.)

20

Define:
1 22
V(z)=F = §m€ r5+mgl(1l—Ccosxq)

Clearly V(0) = 0, however, we have
V(z) = 0 whenever x = [z1,z0]! =
[2k7,0]Y. Thus V is not positive
definite.

Restrict the domain:

x1 € (—2m,27),
l.e.,
V:D—>R, D=][(-2m2r),R]"’

With this restriction, V is positive
definite.



Example (Cont.) 21

e Evaluate the derivative

1
Viz) = EmEQ:E% + mgl(1 — coszq)

| B N f1(z)
Viz) = VVf(z)= [@fﬂl 5962] fz(w)]
= [mglsinzy m€2$€2] ! %ZQn 331]

= mglxoSinxy — mglxroSinxzy =0

e Thus V(z) = 0 and the origin is stable.



Example: Pendulum with friction 22

e Dynamical equation:

mel + mgsin + k6 =0

e State variables: z1 = 6,20, =6

r1 = x>
. g . k
ro = ——SINxr1 ——xo
14 m
o x = [x1,x2]" = [0,0]" is an equilibrium
point.
mg  ® Total Energy:

1
Viz) = Emﬁzaf;% + mgl(1 — coszq)




Example (Cont.) 23

e Evaluate the derivative

1
V(z) = Emézm% + mgl(1 — coszq)

V(z) = [mglsinzy ml2z5] , T2 e
—7 SINxTq1 — m L2
= —k£2$%

e V() is negative semi-definite.

e [ heorigin isstable but cannot conclude asymptotic stability.

e [ he result is disappointing since we know that it is asymp-
totically stable.

e [ he Lyapunov theorem is sufficient condition.



LaSalle’s Asymptotic Stability Theorem 24

e Theorem 3.6 Let x = 0 be an equilibrium point of

z=f(z), [f:D—R",

and let V : D — R be a continuously differentiable function
such that
(i) V(0) =0,
(ii) V() >0 in D, where we assume that 0 € D
(iii) V() <0 in a bounded region R C D
(iv) V(x) does not vanish identically along any trajectory in
R other than x = 0.
then x = 0 is asymptotically stable.



Example

25

e For the pendulum with friction, we know

1
Vi) = EmEQm% + mgl(1 — coszq)

Viz) = —kéQ:U%

e V(z) is negative semi-definite in D = [(—=, 7),R]L.

e Suppose a closed region
R=[(—m,7),(—a,a)]l  for any a > 0.
e Check the condition (iv).

V=0 = 0=-kf’z5 < a2,=0

thus, x> = 0,Vt. This also conclude that o, = 0.



Example (Cont.) 26

e State equation:

T1 = T2

. g _. k
o = —Zsmwl—awg

e ro =0 and xo = 0, thus sinzy = 0.

e Restricting z1 € (—m,7), sinzy = 0 if and only if z1 = 0.

e It follows that V(z) does not vanish identically along any
solution other than = 0, and the origin is locally asymp-
totically stable.



