
Intelligent Control Systems

Visual Tracking (1)
— Direct Pixel-Intensity-based Methods —

Shingo Kagami

Graduate School of Information Sciences,

Tohoku University

swk(at)ic.is.tohoku.ac.jp

http://www.ic.is.tohoku.ac.jp/ja/swk/

Sample codes for this week

2Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

• Open https://github.com/shingo-kagami/ic.git

• Click the green button “Code” and click “Download Zip”

• Copy the files whose names start from ic03*** to C:¥ic2022¥sample

If you are a Git user, you may simply run:

cd C:¥ic2022¥sample
git pull

https://github.com/shingo-kagami/ic.git

Agenda

• Template Matching by Brute-force Search

• Template Matching by Gradient-based Search

• Feature Point Detection

• Gradient-based Search for General Warps

3Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

Visual Tracking

4Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

input image template image Tx,y

Matching Problem:

• To find the area with the best

similarity to the template

How?

• by evaluating a similarity

measure or a dissimilarity

measure for every possible

position

x

y

Matching is often called "tracking"

when it is sequentially done with time

Detection vs Tracking

5Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

Matching problem is called detection when:

Target object is found out of the entire image without relying on

knowledge in previous frames

• If we detect the target object every frame, it can be regarded as a kind

of tracking (Tracking by Detection)

• However, detection is usually computationally demanding

Hence, when real-time tracking is needed, we usually try to utilize our

knowledge in previous frames; once failed, we fall back to detection

Feature-based Methods vs Direct Methods

6Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

direct comparison of

pixel values

comparison of feature values

computed from images (e.g.

histograms, edge positions, …)

Direct Methods Illustrated

7Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

Minimum point of

dissimilarity measure

(In this example, sum of

squared difference of pixel

intensities)

8Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

Examples of Evaluation Functions

: sum of squared differences (SSD)

→ min

: sum of absolute differences (SAD)

→ min

: cross correlation

→ max

: zero-mean normalized cross correlation (ZNCC)

→ max

average

Template Matching for Detection and Tracking

9Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

For Detection:

search area is set to the entire

image

For Tracking:

search area is set at around the

position in the previous frame

(or a position predicted from

previous frames)

input image

template image

search area

Implementation of SSD Matching

10Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

def SSD(target, candidate):
height, width = target.shape
ssd_val = 0

for j in range(height):
for i in range(width):

d = candidate[j, i] - target[j, i]
ssd_val += d * d

return ssd_val

min_ssd = sys.maxsize ## initialized with a large, large number
for j in range(sybegin, syend):

for i in range(sxbegin, sxend):
candidate = image[j:(j + theight), i:(i + twidth)]
ssd = SSD(target, candidate)
if ssd < min_ssd:

min_ssd = ssd
min_location = (i, j)

ic03_template_match_2d.py

target shape: (theight, twidth)

sxybegin

sxyend

Gradient-based Optimization

11Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

𝑇(𝑥, 𝑦)𝐼𝒑(𝑥, 𝑦)

𝐼(𝑥, 𝑦)

𝑝𝑥

Instead of brute force search for the minimum, let us consider application

of Gauss-Newton optimization method to minimize:

𝑝𝑦

𝐼𝒑 𝑥, 𝑦 = 𝐼(𝑝𝑥 + 𝑥, 𝑝𝑦 + 𝑦)

Starting with an initial guess 𝒑 = (𝑝𝑥, 𝑝𝑦),

we seek for Δ𝒑 = (Δ𝑝𝑥, Δ𝑝𝑦)
that makes 𝐼𝒑+Δ𝐩(𝑥, 𝑦) closer to 𝑇(𝑥, 𝑦)

Lucas-Kanade Method: forward algorithm (1/2)

12Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

1st order Taylor expansion is applied:

Rearrainging them into linear equations with respect to (Δ𝑝𝑥, Δ𝑝𝑦)

𝑒𝒑 = 𝑇 − 𝐼𝒑

and partial derivatives are equated to 0:

𝜕𝐼𝒑

𝜕𝑥

𝜕𝐼𝒑

𝜕𝑦

𝑒𝒑

Lucas-Kanade Method: forward algorithm (2/2)

13Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

• By solving the above equation,(Δ𝑝𝑥, Δ𝑝𝑦) is only approximately best

because of the 1st order Taylor approximation. We usually need to

iteratively run the above process by updating

𝑝𝑥 ← 𝑝𝑥 + Δ𝑝𝑥
𝑝𝑦 ← 𝑝𝑦 + Δ𝑝𝑦

and obtaining 𝐼𝒑 𝑥, 𝑦 = 𝐼 𝑝𝑥 + 𝑥, 𝑝𝑦 + 𝑦 with new 𝒑 = (𝑝𝑥, 𝑝𝑦)

• Because 𝐼𝒑 𝑥, 𝑦 changes, the derivatives and their products must be

recomputed for each iteration

[Lucas and Kanade 1981]

Understanding in Vector Formulation

14Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

Jacobian matrix error vector

(Gauss-Newton

approximation of)

Hessian matrix

Setting an initial guess of 𝒑, we seek for additive update Δ𝒑

The problem to be solved is:

After solving the above equation for Δ𝒑, 𝒑 is updated iteratively

Inverse Algorithm (1/2)

15Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

The recomputation of derivatives and their products per iteration can be

avoided by exchanging the role of 𝑇 and 𝐼𝒑

(Δ𝑝𝑥, Δ𝑝𝑦)

𝐼𝒑 𝑥, 𝑦 = 𝐼(𝑝𝑥 + 𝑥, 𝑝𝑦 + 𝑦)

𝑇(𝑥, 𝑦)𝐼𝒑(𝑥, 𝑦)

𝐼(𝑥, 𝑦)

𝑝𝑥

𝑝𝑦

Inverse Algorithm (2/2)

16Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

After solving (Δ𝑝𝑥, Δ𝑝𝑦), we resample 𝐼𝒑(𝑥, 𝑦) with new 𝒑 updated by

𝑝𝑥 ← 𝑝𝑥 − Δ𝑝𝑥
𝑝𝑦 ← 𝑝𝑦 − Δ𝑝𝑦

𝑒𝒑 = 𝐼𝒑 − 𝑇

Move 𝐼𝑝 in the opposite direction

Implementation of the Inverse LK (1/2)

17Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

for j in range(1, theight - 1):
for i in range(1, twidth - 1):

Tx[j, i] = (T[j, i + 1] - T[j, i - 1]) / 2
Ty[j, i] = (T[j + 1, i] - T[j - 1, i]) / 2
TxTx[j, i] = Tx[j, i] * Tx[j, i]
TyTy[j, i] = Ty[j, i] * Ty[j, i]
TxTy[j, i] = Tx[j, i] * Ty[j, i]
H[0, 0] += TxTx[j, i]
H[1, 1] += TyTy[j, i]
H[0, 1] += TxTy[j, i]

H[1, 0] = H[0, 1]

for j in range(1, theight - 1):
for i in range(1, twidth - 1):

err[j, i] = Ip[j, i] - T[j, i]
Tx_err[j, i] = Tx[j, i] * err[j, i]
Ty_err[j, i] = Ty[j, i] * err[j, i]
Jt_err[0] += Tx_err[j, i]
Jt_err[1] += Ty_err[j, i]

ic03_lucas_kanade_2d.py

Implementation of the Inverse LK (2/2)

18Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

def match_template_lk(image, current_center, T, Tx, Ty, JtJ, max_iter=50):
theight, twidth = T.shape

for iter in range(max_iter):
Ip = cv2.getRectSubPix(image, (twidth, theight), current_center)
Ip = np.float32(Ip)
Jt_err = compute_Jt_err(Ip, T, Tx, Ty)
dp = np.linalg.solve(JtJ, Jt_err)
current_center = (current_center[0] - dp[0], current_center[1] - dp[1])
if np.linalg.norm(dp) < 0.2:

break

return current_center

Feature Point Detection

19Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

A

C

B

A: Block with constant intensity is not suitable

B: Block including only edges with the same direction is also not suitable

C: Suitable for tracking

How to find blocks like C?

Let’s consider a case where we need to automatically extract some (often

many) points to be tracked to analyze e.g. the scene structure or motion

Analysis of Hessian Matrix

20Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

The above equation should be stably solved

for a block suitable for tracking

By Diagonalizing 𝐽𝑇𝐽 = 𝑄−1 𝜆1 0
0 𝜆2

𝑄 , we have

𝜆1 0
0 𝜆2

𝑄Δ𝒑 = 𝑄𝐽𝑇𝒆𝒑

A B

C

1

2

A

C

B

B

• Both 𝜆1 and 𝜆2 should be sufficiently larger

than zero

• Too small 𝜆𝑖 implies that determining 𝑖-th
element of 𝑄Δ𝒑 is difficult

(Since 𝐽𝑇𝐽 is positive semi-definite symmetric matrix,

𝜆1, 𝜆2 ≥ 0 and 𝑄 is orthogonal matrix)

0

21Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

Examples of Feature Point Detector

Harris operator [Harris and Stephens 1988]

Good Features to Track [Tomasi and Kanade 1991]

The points with large values of the

above indicators, which are “good” for

tracking and/or matching, are called

feature point, interest point, corner point,

keypoint and so on.

𝜆1

𝜆2

𝜆1𝜆2 − 0.04 𝜆1 + 𝜆2
2

Implementation of Feature Point Detectors (1/2)

22Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

def hessian_map(T, block_size=5):
Tx = np.gradient(T, axis=1)
Ty = np.gradient(T, axis=0)
TxTx = Tx * Tx
TyTy = Ty * Ty
TxTy = Tx * Ty

theight = T.shape[0]
twidth = T.shape[1]
H = np.zeros((theight, twidth, 2, 2), dtype=T.dtype)
H[:, :, 0, 0] = cv2.blur(TxTx, (block_size, block_size))
H[:, :, 1, 1] = cv2.blur(TyTy, (block_size, block_size))
H[:, :, 0, 1] = cv2.blur(TxTy, (block_size, block_size))
H[:, :, 1, 0] = H[:, :, 0, 1]

return H

ic03_feature_points.py

Gradients are computed for all over the image

(to avoid recomputing them for the same point

again and again)

Tensor of order 4; if you are not familiar with

tensors, imagine a theight× twidth array

whose element is 2×2 matrix

Implementation of Feature Point Detectors (2/2)

23Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

def min_eigen_value_map(H):
a = H[:, :, 0, 0] # H = [a b]
b = H[:, :, 0, 1] # [c d]
c = H[:, :, 1, 0]
d = H[:, :, 1, 1]

the smaller solution of s^2 - (a + d) s + ad - bc = 0
min_eig = ((a + d) - np.sqrt((a - d)**2 + 4 * b * c)) / 2

return min_eig

def harris_map(H, coeff_k):
a = H[:, :, 0, 0] # H = [a b]
b = H[:, :, 0, 1] # [c d]
c = H[:, :, 1, 0]
d = H[:, :, 1, 1]

return (a * d - b * c) - coeff_k * (a + d)**2

Other Feature Point Detectors

24Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

SIFT detector [Lowe 2004]

• Build a Gaussian scale space and apply (an approximate)

Laplacian operator in each scale

• Detect extrema of the results (i.e. strongest responses among

their neighbor in space as well as in scale)

• Eliminate edge responses

• (Often followed by encoding of edge orientation histogram in the

neighborhood into a fixed-size vector, called a feature point

descriptor, which can be compared with each other by Euclidean

distance)

FAST detector [Rosten et al. 2010]

• Heuristics based on pixel values along a surrounding circle

• Optimized for speed and quality by machine learning approach

Generalization to Different Warps

25Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

p
𝑇(𝑥, 𝑦)𝐼𝒑(𝑥, 𝑦)

We want to generalize the inverse algorithm of Lucas-Kanade method

for warps beyond 2D translation

Naïve (and wrong) Generalization

26Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

𝑇(𝑥, 𝑦)𝐼𝒑(𝑥, 𝑦)

Δ 𝑝𝑥, 𝑝𝑦, 𝑝𝜃 = (−10, 0, 0)

Then, should we update 𝒑 as

𝒑 ← 𝒑 − Δ𝒑?

Obviously no!

Let’s think of the rigid transform case where 𝒑 = (𝑝𝑥, 𝑝𝑦 , 𝑝𝜃)

What was wrong?

27Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

What we must do is to invert the warp, which happened to be equal to

negating the signs of parameters in the translation case:

However, it generally does not

correct

inverse

So, what to do?

28Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

𝒙′ = 𝒘𝒑 𝒙 𝒙 = 𝑥, 𝑦 𝑇, 𝒙′ = 𝑥′, 𝑦′ 𝑇

cf. the translation case:

First, we need to introduce the warping function explicitly:

How much the pixel coordinates

move when 𝑝𝑘 moves around 0

How much the pixel value changes

when the pixel coordinates move

Warp Functions and Their Derivatives

29Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

rigid transform: 𝒑 = (𝑡𝑥, 𝑡𝑦, 𝜃)

homography transform

Inverse Compositional Algorithm of LK Method

30Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

Iteratively solve 𝐽𝑇𝐽 Δ𝒑 = 𝐽𝑇𝒆𝒑 and

update the warp by composing the

obtained incremental warp 𝒘Δ𝒑

𝐼(𝒘𝒑 𝒙) 𝑇 𝒙

[Baker and Matthews 2004]

Precompute 𝐽 and 𝐽𝑇𝐽 once template is given

pixels

parameters

Implementation for Homography Warp (1/2)

31Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

def compute_derivatives(T):
theight = T.shape[0]
twidth = T.shape[1]
npix = twidth * theight
Tx = np.gradient(T, axis=1).reshape(npix, 1)
Ty = np.gradient(T, axis=0).reshape(npix, 1)

dwdp_x = np.empty((npix, 8), dtype=T.dtype)
dwdp_y = np.empty((npix, 8), dtype=T.dtype)
row = 0
for y in range(theight):

for x in range(twidth):
dwdp_x[row] = np.array([x, y, 1, 0, 0, 0, -x*x, -x*y])
dwdp_y[row] = np.array([0, 0, 0, x, y, 1, -x*y, -y*y])
row += 1

J = Tx * dwdp_x + Ty * dwdp_y
JtJ = np.dot(J.T, J)
return J, JtJ

ic03_lucas_kanade_homography.py

row-wise multiply and element-wise add

Implementation for Homography Warp (2/2)

32Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

def track_homography_lk(image, homography_p, T, J, JtJ, max_iter=50):
theight, twidth = T.shape
npix = twidth * theight

for iter in range(max_iter):
Ip = cv2.warpPerspective(image, inv(homography_p), (twidth, theight))
Ip = np.float32(Ip)
err = (Ip - T).reshape(npix)
dp = np.linalg.solve(JtJ, np.dot(J.T, err))
homography_dp = np.array([[1 + dp[0], dp[1], dp[2]],

[dp[3], 1 + dp[4], dp[5]],
[dp[6], dp[7], 1.0]])

homography_p = np.dot(homography_p, inv(homography_dp))

return homography_p

current guess is passed as a homography matrix

returns an updated homography matrix

composition of warps is done by

matrix multiplication

Other Choices of Optimization Methods

33Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

Levenberg-Marquardt method

Efficient Second-order Minimization method [Banhimane and Malis 2007]

𝐼 : identity matrix

𝜇 : scalar coefficient (updated between iterations)

(small 𝜇 : more like Gauss-Newton,

large 𝜇 : more like steepest descent)

J1: derivative of template image

J2: derivative of current warped image

(Possible when parametrized with special care)

Exercises (Not Assignments)

34Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

Copy and modify ic03_lucas_kanade_homography.py to apply a simpler version of

Levenberg-Marquardt method in which 𝜇 is fixed, i.e., replace JtJ for example with

JtJ + 0.001 * np.eye(8) in:

dp = np.linalg.solve(JtJ, np.dot(J.T, err))

You may want to choose different 𝜇 other than 0.001 and see the difference.

You may also need to increase max_iter.

Copy and modify ic03_lucas_kanade_homography.py

to visualize J (Jacobian matrix).

Hint:

• J[:, k] (𝑘-th column of 𝐽) gives derivative with

respect to the 𝑘-th parameter, which should be

reshaped to the shape of the template image

• The values should be normalized to fit [0, 1] when

passed to cv2.imshow

References

35Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

• B. K. P. Horn and B. G. Schunck: Determining Optical Flow, Artificial Intelligence,

vol.17, pp.185-203, 1981.

• C. Harris and M. Stephens: A Combined Corner and Edge Detector, Proc. 14th Alvey

Vision Conference, pp.147-151, 1988.

• B. D. Lucas and T. Kanade: An Iterative Image Registration Technique with an

Application to Stereo Vision, Proc. 7th International Conference on Artificial

Intelligence, pp.674-679, 1981.

• S. Baker and I. Matthews: Lucas-Kanade 20 Years On: A Unifying Framework,

International Journal of Computer Vision, vol. 56, no. 3, 2004.

• S. Benhimane and E. Malis: Homography-based 2D Visual Tracking and Servoing,

International Journal of Robotics Research, vol. 26, no. 7, pp.661-676, 2007.

• D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International

Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

• E. Rosten, R. Porter and T. Drummond: Faster and Better: A Machine Learning

Approach to Corner Detection, IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 32, no. 1, pp. 105-119, 2010.

• C. Tomasi and T. Kanade: Detection and Tracking of Point Features, Shape and

Motion from Image Streams: a Factorization Method –Part 3, Technical Report CMU-

CS-91-132, Carnegie Mellon University, 1991.

