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Sample codes for this week
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• Open https://github.com/shingo-kagami/ic.git

• Click the green button “Code” and click “Download Zip”

• Copy the files whose names start from ic03*** to C:¥ic2022¥sample

If you are a Git user, you may simply run:

cd C:¥ic2022¥sample
git pull

https://github.com/shingo-kagami/ic.git


Agenda

• Template Matching by Brute-force Search

• Template Matching by Gradient-based Search

• Feature Point Detection

• Gradient-based Search for General Warps
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Visual Tracking
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input image template image Tx,y

Matching Problem:

• To find the area with the best 

similarity to the template

How?

• by evaluating a similarity 

measure or a dissimilarity 

measure for every possible 

position

x

y

Matching is often called "tracking" 

when it is sequentially done with time



Detection vs Tracking
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Matching problem is called detection when:

Target object is found out of the entire image without relying on 

knowledge in previous frames

• If we detect the target object every frame, it can be regarded as a kind 

of tracking (Tracking by Detection)

• However, detection is usually computationally demanding

Hence, when real-time tracking is needed, we usually try to utilize our 

knowledge in previous frames; once failed, we fall back to detection



Feature-based Methods vs Direct Methods

6Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2022 (3)

direct comparison of 

pixel values

comparison of feature values 

computed from images (e.g. 

histograms, edge positions, …)



Direct Methods Illustrated
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Minimum point of 

dissimilarity measure

(In this example, sum of 

squared difference of pixel 

intensities)
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Examples of Evaluation Functions

: sum of squared differences (SSD)

→ min

: sum of absolute differences (SAD)

→ min

: cross correlation 

→ max

: zero-mean normalized cross correlation (ZNCC)

→ max

average



Template Matching for Detection and Tracking
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For Detection: 

search area is set to the entire 

image

For Tracking: 

search area is set at around the 

position in the previous frame 

(or a position predicted from 

previous frames)

input image

template image

search area



Implementation of SSD Matching 
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def SSD(target, candidate):
height, width = target.shape
ssd_val = 0

for j in range(height):
for i in range(width):

d = candidate[j, i] - target[j, i]
ssd_val += d * d

return ssd_val

min_ssd = sys.maxsize ## initialized with a large, large number
for j in range(sybegin, syend):

for i in range(sxbegin, sxend):
candidate = image[j:(j + theight), i:(i + twidth)]
ssd = SSD(target, candidate)
if ssd < min_ssd:

min_ssd = ssd
min_location = (i, j)

ic03_template_match_2d.py 

target shape: (theight, twidth)

sxybegin

sxyend



Gradient-based Optimization
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𝑇(𝑥, 𝑦)𝐼𝒑(𝑥, 𝑦)

𝐼(𝑥, 𝑦)

𝑝𝑥

Instead of brute force search for the minimum, let us consider application 

of Gauss-Newton optimization method to minimize: 

𝑝𝑦

𝐼𝒑 𝑥, 𝑦 = 𝐼(𝑝𝑥 + 𝑥, 𝑝𝑦 + 𝑦)

Starting with an initial guess 𝒑 = (𝑝𝑥, 𝑝𝑦), 

we seek for Δ𝒑 = (Δ𝑝𝑥, Δ𝑝𝑦)
that makes 𝐼𝒑+Δ𝐩(𝑥, 𝑦) closer to 𝑇(𝑥, 𝑦)



Lucas-Kanade Method: forward algorithm (1/2)
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1st order Taylor expansion is applied:

Rearrainging them into linear equations with respect to  (Δ𝑝𝑥, Δ𝑝𝑦)

𝑒𝒑 = 𝑇 − 𝐼𝒑

and partial derivatives are equated to 0: 

𝜕𝐼𝒑

𝜕𝑥

𝜕𝐼𝒑

𝜕𝑦

𝑒𝒑



Lucas-Kanade Method: forward algorithm (2/2)
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• By solving the above equation,(Δ𝑝𝑥, Δ𝑝𝑦) is only approximately best 

because of the 1st order Taylor approximation. We usually need to 

iteratively run the above process by updating

𝑝𝑥 ← 𝑝𝑥 + Δ𝑝𝑥
𝑝𝑦 ← 𝑝𝑦 + Δ𝑝𝑦

and obtaining 𝐼𝒑 𝑥, 𝑦 = 𝐼 𝑝𝑥 + 𝑥, 𝑝𝑦 + 𝑦 with new 𝒑 = (𝑝𝑥, 𝑝𝑦)

• Because 𝐼𝒑 𝑥, 𝑦 changes, the derivatives and their products must be 

recomputed for each iteration

[Lucas and Kanade 1981]



Understanding in Vector Formulation
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Jacobian matrix error vector

(Gauss-Newton 

approximation of)

Hessian matrix

Setting an initial guess of 𝒑, we seek for additive update Δ𝒑

The problem to be solved is:

After solving the above equation for Δ𝒑, 𝒑 is updated iteratively



Inverse Algorithm (1/2)
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The recomputation of derivatives and their products per iteration can be 

avoided by exchanging the role of 𝑇 and 𝐼𝒑

(Δ𝑝𝑥, Δ𝑝𝑦)

𝐼𝒑 𝑥, 𝑦 = 𝐼(𝑝𝑥 + 𝑥, 𝑝𝑦 + 𝑦)

𝑇(𝑥, 𝑦)𝐼𝒑(𝑥, 𝑦)

𝐼(𝑥, 𝑦)

𝑝𝑥

𝑝𝑦



Inverse Algorithm (2/2)
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After solving (Δ𝑝𝑥, Δ𝑝𝑦), we resample 𝐼𝒑(𝑥, 𝑦) with new 𝒑 updated by

𝑝𝑥 ← 𝑝𝑥 − Δ𝑝𝑥
𝑝𝑦 ← 𝑝𝑦 − Δ𝑝𝑦

𝑒𝒑 = 𝐼𝒑 − 𝑇

Move 𝐼𝑝 in the opposite direction 



Implementation of the Inverse LK (1/2)
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for j in range(1, theight - 1):
for i in range(1, twidth - 1):

Tx[j, i] = (T[j, i + 1] - T[j, i - 1]) / 2
Ty[j, i] = (T[j + 1, i] - T[j - 1, i]) / 2
TxTx[j, i] = Tx[j, i] * Tx[j, i]
TyTy[j, i] = Ty[j, i] * Ty[j, i]
TxTy[j, i] = Tx[j, i] * Ty[j, i]
H[0, 0] += TxTx[j, i]
H[1, 1] += TyTy[j, i]
H[0, 1] += TxTy[j, i]

H[1, 0] = H[0, 1]

for j in range(1, theight - 1):
for i in range(1, twidth - 1):

err[j, i] = Ip[j, i] - T[j, i]
Tx_err[j, i] = Tx[j, i] * err[j, i]
Ty_err[j, i] = Ty[j, i] * err[j, i]
Jt_err[0] += Tx_err[j, i]
Jt_err[1] += Ty_err[j, i]

ic03_lucas_kanade_2d.py 



Implementation of the Inverse LK (2/2)
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def match_template_lk(image, current_center, T, Tx, Ty, JtJ, max_iter=50):
theight, twidth = T.shape

for iter in range(max_iter):
Ip = cv2.getRectSubPix(image, (twidth, theight), current_center)
Ip = np.float32(Ip)
Jt_err = compute_Jt_err(Ip, T, Tx, Ty)
dp = np.linalg.solve(JtJ, Jt_err)
current_center = (current_center[0] - dp[0], current_center[1] - dp[1])
if np.linalg.norm(dp) < 0.2:

break

return current_center



Feature Point Detection
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A

C

B

A: Block with constant intensity is not suitable

B: Block including only edges with the same direction is also not suitable 

C: Suitable for tracking

How to find blocks like C?

Let’s consider a case where we need to automatically extract some (often 

many) points to be tracked to analyze e.g. the scene structure or motion



Analysis of Hessian Matrix
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The above equation should be stably solved 

for a block suitable for tracking

By Diagonalizing 𝐽𝑇𝐽 = 𝑄−1 𝜆1 0
0 𝜆2

𝑄 , we have

𝜆1 0
0 𝜆2

𝑄Δ𝒑 = 𝑄𝐽𝑇𝒆𝒑

A B

C

1

2

A

C

B

B

• Both 𝜆1 and 𝜆2 should be sufficiently larger 

than zero

• Too small 𝜆𝑖 implies that determining 𝑖-th
element of 𝑄Δ𝒑 is difficult

(Since 𝐽𝑇𝐽 is positive semi-definite symmetric matrix, 

𝜆1, 𝜆2 ≥ 0 and 𝑄 is orthogonal matrix)

0
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Examples of Feature Point Detector

Harris operator [Harris and Stephens 1988]

Good Features to Track [Tomasi and Kanade 1991]

The points with large values of the 

above indicators, which are “good” for 

tracking and/or matching, are called 

feature point, interest point, corner point, 

keypoint and so on.

𝜆1

𝜆2

𝜆1𝜆2 − 0.04 𝜆1 + 𝜆2
2



Implementation of Feature Point Detectors (1/2)
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def hessian_map(T, block_size=5):
Tx = np.gradient(T, axis=1)
Ty = np.gradient(T, axis=0)
TxTx = Tx * Tx
TyTy = Ty * Ty
TxTy = Tx * Ty

theight = T.shape[0]
twidth = T.shape[1]
H = np.zeros((theight, twidth, 2, 2), dtype=T.dtype)
H[:, :, 0, 0] = cv2.blur(TxTx, (block_size, block_size))
H[:, :, 1, 1] = cv2.blur(TyTy, (block_size, block_size))
H[:, :, 0, 1] = cv2.blur(TxTy, (block_size, block_size))
H[:, :, 1, 0] = H[:, :, 0, 1]

return H

ic03_feature_points.py 

Gradients are computed for all over the image 

(to avoid recomputing them for the same point 

again and again)

Tensor of order 4; if you are not familiar with 

tensors, imagine a theight× twidth array 

whose element is 2×2 matrix



Implementation of Feature Point Detectors (2/2)
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def min_eigen_value_map(H):
a = H[:, :, 0, 0] # H = [a b]
b = H[:, :, 0, 1] # [c d]
c = H[:, :, 1, 0]
d = H[:, :, 1, 1]

## the smaller solution of s^2 - (a + d) s + ad - bc = 0
min_eig = ((a + d) - np.sqrt((a - d)**2 + 4 * b * c)) / 2

return min_eig

def harris_map(H, coeff_k):
a = H[:, :, 0, 0] # H = [a b]
b = H[:, :, 0, 1] # [c d]
c = H[:, :, 1, 0]
d = H[:, :, 1, 1]

return (a * d - b * c) - coeff_k * (a + d)**2



Other Feature Point Detectors
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SIFT detector [Lowe 2004]

• Build a Gaussian scale space and apply (an approximate) 

Laplacian operator in each scale

• Detect extrema of the results (i.e. strongest responses among 

their neighbor in space as well as in scale)

• Eliminate edge responses

• (Often followed by encoding of edge orientation histogram in the 

neighborhood into a fixed-size vector, called a feature point 

descriptor, which can be compared with each other by Euclidean 

distance)

FAST detector [Rosten et al. 2010]

• Heuristics based on pixel values along a surrounding circle

• Optimized for speed and quality by machine learning approach



Generalization to Different Warps
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p
𝑇(𝑥, 𝑦)𝐼𝒑(𝑥, 𝑦)

We want to generalize the inverse algorithm of Lucas-Kanade method 

for warps beyond 2D translation



Naïve (and wrong) Generalization
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𝑇(𝑥, 𝑦)𝐼𝒑(𝑥, 𝑦)

Δ 𝑝𝑥, 𝑝𝑦, 𝑝𝜃 = (−10, 0, 0)

Then, should we update 𝒑 as

𝒑 ← 𝒑 − Δ𝒑?

Obviously no!

Let’s think of the rigid transform case where 𝒑 = (𝑝𝑥, 𝑝𝑦 , 𝑝𝜃)



What was wrong?
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What we must do is to invert the warp, which happened to be equal to 

negating the signs of parameters in the translation case: 

However, it generally does not

correct 

inverse



So, what to do?
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𝒙′ = 𝒘𝒑 𝒙 𝒙 = 𝑥, 𝑦 𝑇, 𝒙′ = 𝑥′, 𝑦′ 𝑇

cf. the translation case:

First, we need to introduce the warping function explicitly:

How much the pixel coordinates 

move when 𝑝𝑘 moves around 0

How much the pixel value changes 

when the pixel coordinates move



Warp Functions and Their Derivatives
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rigid transform: 𝒑 = (𝑡𝑥, 𝑡𝑦, 𝜃)

homography transform



Inverse Compositional Algorithm of LK Method
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Iteratively solve 𝐽𝑇𝐽 Δ𝒑 = 𝐽𝑇𝒆𝒑 and 

update the warp by composing the 

obtained incremental warp 𝒘Δ𝒑

𝐼(𝒘𝒑 𝒙 ) 𝑇 𝒙

[Baker and Matthews 2004]

Precompute 𝐽 and 𝐽𝑇𝐽 once template is given

# pixels

# parameters



Implementation for Homography Warp (1/2)
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def compute_derivatives(T):
theight = T.shape[0]
twidth = T.shape[1]
npix = twidth * theight
Tx = np.gradient(T, axis=1).reshape(npix, 1)
Ty = np.gradient(T, axis=0).reshape(npix, 1)

dwdp_x = np.empty((npix, 8), dtype=T.dtype)
dwdp_y = np.empty((npix, 8), dtype=T.dtype)
row = 0
for y in range(theight):

for x in range(twidth):
dwdp_x[row] = np.array([ x, y, 1, 0, 0, 0, -x*x, -x*y ])
dwdp_y[row] = np.array([ 0, 0, 0, x, y, 1, -x*y, -y*y ])
row += 1

J = Tx * dwdp_x + Ty * dwdp_y
JtJ = np.dot(J.T, J)
return J, JtJ

ic03_lucas_kanade_homography.py 

row-wise multiply and element-wise add



Implementation for Homography Warp (2/2)
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def track_homography_lk(image, homography_p, T, J, JtJ, max_iter=50):
theight, twidth = T.shape
npix = twidth * theight

for iter in range(max_iter):
Ip = cv2.warpPerspective(image, inv(homography_p), (twidth, theight))
Ip = np.float32(Ip)
err = (Ip - T).reshape(npix)
dp = np.linalg.solve(JtJ, np.dot(J.T, err))
homography_dp = np.array([[1 + dp[0], dp[1], dp[2]],

[dp[3], 1 + dp[4], dp[5]],
[dp[6], dp[7], 1.0]])

homography_p = np.dot(homography_p, inv(homography_dp))

return homography_p

current guess is passed as a homography matrix

returns an updated homography matrix

composition of warps is done by 

matrix multiplication



Other Choices of Optimization Methods
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Levenberg-Marquardt method

Efficient Second-order Minimization method [Banhimane and Malis 2007]

𝐼 : identity matrix

𝜇 : scalar coefficient (updated between iterations)

(small 𝜇 : more like Gauss-Newton,

large 𝜇 : more like steepest descent)

J1: derivative of template image 

J2: derivative of current warped image

(Possible when parametrized with special care)



Exercises (Not Assignments)
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Copy and modify ic03_lucas_kanade_homography.py to apply a simpler version of 

Levenberg-Marquardt method in which 𝜇 is fixed, i.e., replace JtJ for example with 

JtJ + 0.001 * np.eye(8) in:

dp = np.linalg.solve(JtJ, np.dot(J.T, err))

You may want to choose different 𝜇 other than 0.001 and see the difference. 

You may also need to increase max_iter.

Copy and modify ic03_lucas_kanade_homography.py 

to visualize J (Jacobian matrix).

Hint:

• J[:, k] (𝑘-th column of 𝐽) gives derivative with 

respect to the 𝑘-th parameter, which should be 

reshaped to the shape of the template image

• The values should be normalized to fit [0, 1] when 

passed to cv2.imshow
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