
Intelligent Control Systems

Speeding-up Techniques of Image Processing

Shingo Kagami
Graduate School of Information Sciences,

Tohoku University
swk(at)ic.is.tohoku.ac.jp

http://www.ic.is.tohoku.ac.jp/ja/swk/

2 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Fast Image Processing

• We have learned basics of image processing and a few
standard methods of visual tracking

• In some respects, we have ignored performance issues
• The same computation may be achieved by different

algorithms
• The same algorithm may become fast or slow

depending on the way it is coded

• Bearing in mind real-time applications (e.g. visual

servoing), we will learn speeding-up techniques for image
processing

3 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Algorithm Choice Example: Gaussian Filter

• m£ n kernel convolution requires
computational time proportional to
mn for each pixel

• When the kernel is separable as wx,y = ux vy, the cost
becomes proportional to m + n:

e.g.:

4 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Besides Algorithm Choices

• The most important thing is to choose good algorithms
• Fast Fourier Transform
• separable filters
• nonlinear optimization (vs. full search)

• Even if the same algorithm is used, performance can be
significantly affected by implementation

• Let’s see how a simple sample program can be speeded up:

Highlighting frame difference of 640x480 images
•Using OpenCV functions: 1 ~ 2 ms
•Naive Implementation: 2 ~ 3 ms

5 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Highlighting Frame Difference: Algorithm
Images input, gray, prev_gray, output;

Repeat {

// color conversion from BGR to Gray
for each (i,j) {

gray(i,j) := BGR2GRAY(input(i,j))
}
// take frame difference and highlight
for each (i,j) {

output(i,j) :=
blue, |gray(i,j) – prev_gray(i,j)| > threshold
gray(i,j), otherwise

}
// save current frame
for each (i,j) {

prev_gray(i,j) := gray(i,j)
}

}

6 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

How to Measure Elapsed Time

double t_begin = (double)cv::getTickCount();
/* the code to be measured */
double t_end = (double)cv::getTickCount();
double delta_in_ms =
 1000.0 * (tick_end - tick_begin) / cv::getTickFrequency();

Using OpenCV functions:

Or, you can use my library stattimer (Get stattimer.hpp from
http://code.google.com/p/stattimer/ and put it somewhere in your include path):

#include "stattimer.hpp"
STimerList st;

st.start("label1");
/* the code to be measured */
st.stop("label1");

The results are reported when the program finishes

7 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Outline

• Local Optimization of Coding

• Pixel Access Methods

• Loop Optimization

• Parallel Processing

8 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Common Sense: What are slow?

fast slow

integer operations >>> floating point operations

add, sub, logic >> multiplication >>>>>>>> division

arithmetic/logic >> jump >>> function call

arithmetic/logic >>>>>>> memory access

local/continuous memory access >>>> global/random access

mutually-independent instructions >>> dependent instructions
superscalar pipeline principle

cache memory principle

pipeline hazard stack®ister operation overhead

9 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Tech. 1: Table Lookup

• If an expensive operations can be done beforehand and the
results can be stored in memory, the operations can be
replaced by table lookups

integer operations >>> floating point operations
add, sub, logic >> multiplication >>>>>>>> division

arithmetic/logic >>>>>>> memory access

arithmetic/logic >> jump >>> function call

... = (r * 306 + g * 601 + b * 117) / 1024;

... = (b2gray[b] + g2gray[g] + r2gray[r]) / 1024;

Pros: reduces costly operations
Cons: increases memory access

10 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Tech. 2: Strength Reduction

• The same algorithm may be achieved by weaker (less
computationally expensive) operations

add, sub, logic >> multiplication >>>>>>>> division
arithmetic/logic >> jump >>> function call

if (diff > 30 || diff < -30) {
 img.at<cv::Vec3b>(j, i)[0] = 255;
 img.at<cv::Vec3b>(j, i)[1] = 0;
} else {
 img.at<cv::Vec3b>(j, i)[0] = g;
 img.at<cv::Vec3b>(j, i)[1] = g;
}

int active = ((diff > 30 || diff < -30) && 255);
img.at<cv::Vec3b>(j, i)[0] = g | active;
img.at<cv::Vec3b>(j, i)[1] = g & ~active;

11 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Tech. 3: Bulk Memory Copy

• Instead of copying pixels by iterating through the memory,
you can try memcpy

• Using this is possible only when the copied data are stored in
a continuous area of memory

• e.g.: To copy a sub rectangle in an image, memcpy must
be done line by line

•memset sometimes will be also useful

12 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Results (each part)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

bgr2gray OpenCV

bgr2gray calc

bgr2gray lut

highlight diff OpenCV

highlight diff logical

highlight diff if-else

copy OpenCV

copy pixelwise

copy by memcpy

tim
e

[m
s]

• Spec: Core i7-4600U 2.1 GHz, 16 GB memory
• Some work better; Some work worse!

Errorbars show standard deviations

13 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Note: Row or Column Major Access

row major

column major

local/continuous memory access >>>> global/random access

for (j = 0; j < height; j++) {
 for (i = 0; i < width; i++) {
 image.at<uchar>(j, i) = ...

 }
}

for (i = 0; i < width; i++) {
 for (j = 0; j < height; j++) {
 image.at<uchar>(j, i) = ...

 }
}

cv::Mat stores data in row-major order

14 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Results (each part)

 0

 0.5

 1

 1.5

 2

 2.5

bgr2gray calc

bgr2gray lut

highlight diff logical

highlight diff if-else

copy pixelwise

bgr2gray calc

bgr2gray lut

highlight diff logical

highlight diff if-else

copy pixelwise

tim
e

[m
s]

row major column major

15 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Outline

• Local Optimization of Coding

• Pixel Access Methods

• Loop Optimization

• Parallel Processing

16 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Tech. 4: Pixel Access Methods

add, sub, logic >> multiplication >>>>>>>> division

for (j = 0; j < height; j++) {
 for (i = 0; i < width; i++) {
 image.at<uchar>(j, i) = ...

 }
}

for (j = 0; j < height; j++) {
 uchar *ptr = image.ptr<uchar>(j);
 for (i = 0; i < width; i++) {
 ptr[i] = ...
 }
}

width * j + i

ptr + i

0
1
2
3

j

image

image.ptr<..>(j)

17 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Results (each part)

 0

 0.5

 1

 1.5

 2

 2.5

bgr2gray OpenCV

bgr2gray calc

bgr2gray pixel access by ptr

highlight diff OpenCV

highlight diff if-else

highlight diff pixel access by ptr

highlight diff pixel access by ptr (bulk)

tim
e

[m
s]

In my environment (Visual Studio 2012), treating a color pixel (cv::Vec3b)
in bulk like outp[i] = cv::Vec3b(255, 0, 0);
is ridiculously slow

18 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Outline

• Local Optimization of Coding

• Pixel Access Methods

• Loop Optimization

• Parallel Processing

19 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Tech. 5: Loop Fusion

local/continuous memory access >>>> global/random access
mutually-independent instructions >>> dependent instructions

for (j = 0; j < height; j++) {
 for (i = 0; i < width; i++) {
 f(...);
 }
}
for (j = 0; j < height; j++) {
 for (i = 0; i < width; i++) {
 g(...);
 }
}

for (j = 0; j < height; j++) {
 for (i = 0; i < width; i++) {
 f(...);
 g(...);
 }
}

• smaller loop overheads
• improved memory

locality
• more independent

instructions within a loop

20 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Tech. 6: Loop Unrolling

mutually-independent instructions >>> dependent instructions

for (i = 0; i < N; i++) {
 f(i, ...) = ...
}

for (i = 0; i < N; i += 4) {
 f(i, ...) = ...
 f(i+1, ...) = ...
 f(i+2, ...) = ...
 f(i+3, ...) = ...
}

• smaller loop overheads
• more independent

instructions within a loop

21 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Results (total)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

OpenCV
naive

pixel access by ptr

loop fused

loop fused except memcpy

loop unrolled

tim
e

[m
s]

22 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

OpenCV
naive

pixel access by ptr

loop fused

loop fused except memcpy

loop unrolled

tim
e

[m
s]

23 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Outline

• Local Optimization of Coding

• Pixel Access Methods

• Loop Optimization

• Parallel Processing

24 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Tech. 7: Multi-Threading

#pragma omp parallel for num_threads(4)
for (j = 0; j < height; j++) {
 for (i = 0; i < width; i++) {
 image.at<uchar>(j, i) = ...
 }
}

• Image processing in general has high data parallelism, and
thus parallel processing is effective

• One of the easiest way is to parallelize for loops into
multiple threads using OpenMP

• Threads will be executed in multiple cores
• Visual C++ supports OpenMP by default

•Config. properties – C/C++ – Language – OpenMP

25 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Tech. 8: SIMD Extensions
• SIMD: Single Instruction stream, Multiple Data stream

cf. MIMD
• Many recent processors have extended instruction set to

perform SIMD operations
• MMX, SSE, AVX (intel)

• In SSE, eight 128-bit registers (xmm0, ... xmm7) are used

• sixteen 8-bit data, eight 16-bit data, four 32-bit data, or two 64-bit
data are processed at a time

xmm0

xmm1

+ + + +

128 bit

32-bit float
or

32-bit integer

How to Program

26 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

In happiest case, your compiler may use SIMD automatically

for (int j = 0; j < height; j++) {
 uchar *img_ptr = image.ptr<uchar>(j);
 for (int i = 0; i < width; i++) {
 img_ptr[i] = 255 - img_ptr[i];
 }
} Visual Studio 2012 (x64) generates SIMD for this code

for (int j = 0; j < height; j++) {
 uchar *img_ptr = image.ptr<uchar>(j);
 for (int i = 0; i < width; i++) {
 img_ptr[i] = ~img_ptr[i];
 }
} But it doesn’t for this!

27 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

How to Program

float sum = 0.0f;
for (i = 0; i < N; i++) {
 sum += w[i] * x[i];
}

__m128 sum = _mm_setzero_ps();
for (i = 0; i < N; i += 4) {
 __m128 ws = _mm_loadu_ps(&w[i]);
 __m128 xs = _mm_loadu_ps(&x[i]);
 sum = _mm_add_ps(sum, _mm_mul_ps(ws, xs));
}
...

Use compiler intrinsics: easiest way to explicitly use SIMD
•common for Visual C++ and GCC

28 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Results (each part)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

bgr2gray OpenCV

bgr2gray calc

bgr2gray pixel access by ptr

bgr2gray OpenMP

bgr2gray SSE

bgr2gray OpenMP/SSE

highlight diff OpenCV

highlight diff if-else

highlight diff pixel access by ptr

highlight diff OpenMP

highlight diff SSE

highlight diff OpenMP/SSE

tim
e

[m
s]

Note the large deviation when OpenMP is enabled

29 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Results (total)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

OpenCV
naive

pixel access by ptr

loop fused except memcpy

loop unrolled

OpenMP
SSE

OpenMP/SSE

tim
e

[m
s]

30 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

OpenCV
naive

pixel access by ptr

loop fused except memcpy

loop unrolled

OpenMP
SSE

OpenMP/SSE

tim
e

[m
s]

31 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

Summary

• Pixel Scan Order
• Pixels should be accessed in the order in which they are

stored (row major in OpenCV)
• Pixel Access Methods

•at() is slow! Using ptr() instead significantly improves
the performance

• Other Optimizations
• strength reduction, table lookup, loop fusion, loop unrolling

• Parallel Processing
• OpenMP, SIMD extension, (GPU was not mentioned today)

• Some work fine; Some do not (Some may work even worse)
• Trial & error are needed
• Trade-off between performance and maintainability
• Too early optimization should be avoided

32 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (7)

References

• D. Bulka and D. Mayhew: Efficient C++: Performance Programming
Techniques, Addison-Wesley, 1999.

• https://bitbucket.org/swkagami/stattimer (as of 2016/7/25)

(in Japanese)
• 片山: Cプログラム高速化研究班, USP研究所, 2012.
• x86/x64 SIMD命令一覧表 （SSE～AVX2）,

http://www.officedaytime.com/tips/simd.html (as of 2016/7/25)

Sample codes are available at
http://www.ic.is.tohoku.ac.jp/~swk/lecture/

