
Intelligent Control Systems 
 

Speeding-up Techniques of Image Processing 

Shingo Kagami 
Graduate School of Information Sciences,  

Tohoku University 
swk(at)ic.is.tohoku.ac.jp 

 
http://www.ic.is.tohoku.ac.jp/ja/swk/ 

 



2 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems  2016 (7) 

Fast Image Processing 

• We have learned basics of image processing and a few 
standard methods of visual tracking 

• In some respects, we have ignored performance issues  
• The same computation may be achieved by different 

algorithms 
• The same algorithm may become fast or slow 

depending on the way it is coded 
 
• Bearing in mind real-time applications (e.g. visual 

servoing), we will learn speeding-up techniques for image 
processing 
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Algorithm Choice Example: Gaussian Filter 

• m£ n kernel convolution requires  
computational time proportional to 
mn for each pixel 

• When the kernel is separable as wx,y = ux vy, the cost 
becomes proportional to m + n:  

e.g.: 
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Besides Algorithm Choices 

• The most important thing is to choose good algorithms 
• Fast Fourier Transform 
• separable filters 
• nonlinear optimization (vs. full search) 

• Even if the same algorithm is used, performance can be 
significantly affected by implementation 
 

• Let’s see how a simple sample program can be speeded up: 
 

Highlighting frame difference of 640x480 images 
•Using OpenCV functions: 1 ~ 2 ms 
•Naive Implementation: 2 ~ 3 ms 
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Highlighting Frame Difference: Algorithm 
Images input, gray, prev_gray, output; 
 
Repeat { 

// color conversion from BGR to Gray 
for each (i,j) { 

gray(i,j) := BGR2GRAY(input(i,j)) 
} 
// take frame difference and highlight 
for each (i,j) { 

output(i,j) :=  
blue, |gray(i,j) – prev_gray(i,j)| > threshold 
gray(i,j), otherwise 

} 
// save current frame 
for each (i,j) { 

prev_gray(i,j) := gray(i,j) 
} 

} 
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How to Measure Elapsed Time 

double t_begin = (double)cv::getTickCount(); 
/* the code to be measured */ 
double t_end = (double)cv::getTickCount(); 
double delta_in_ms =  
  1000.0 * (tick_end - tick_begin) / cv::getTickFrequency(); 

Using OpenCV functions: 

Or, you can use my library stattimer (Get stattimer.hpp from 
http://code.google.com/p/stattimer/ and put it somewhere in your include path): 

#include "stattimer.hpp" 
STimerList st; 
 
st.start("label1"); 
/* the code to be measured */ 
st.stop("label1"); 

The results are reported when the program finishes 
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Outline 

• Local Optimization of Coding 
 

• Pixel Access Methods 
 

• Loop Optimization 
 

• Parallel Processing 
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Common Sense: What are slow?  

fast slow 

integer operations >>> floating point operations 

add, sub, logic >> multiplication >>>>>>>> division 

arithmetic/logic  >> jump >>> function call 

arithmetic/logic >>>>>>> memory access 

local/continuous memory access >>>> global/random access 

mutually-independent instructions >>> dependent instructions 
superscalar pipeline principle 

cache memory principle 

pipeline hazard stack&register operation overhead 
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Tech. 1: Table Lookup 

• If an expensive operations can be done beforehand and the 
results can be stored in memory, the operations can be 
replaced by table lookups 

integer operations >>> floating point operations 
add, sub, logic >> multiplication >>>>>>>> division 

arithmetic/logic >>>>>>> memory access 

arithmetic/logic  >> jump >>> function call 

...  = (r * 306 + g * 601 + b * 117) / 1024; 

...  = (b2gray[b] + g2gray[g] + r2gray[r]) / 1024; 

Pros: reduces costly operations 
Cons: increases memory access 
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Tech. 2: Strength Reduction 

• The same algorithm may be achieved by weaker (less 
computationally expensive) operations 

add, sub, logic >> multiplication >>>>>>>> division 
arithmetic/logic  >> jump >>> function call 

if (diff > 30 || diff < -30) { 
    img.at<cv::Vec3b>(j, i)[0] = 255; 
    img.at<cv::Vec3b>(j, i)[1] = 0; 
} else { 
    img.at<cv::Vec3b>(j, i)[0] = g; 
    img.at<cv::Vec3b>(j, i)[1] = g; 
} 

int active = ((diff > 30 || diff < -30) && 255); 
img.at<cv::Vec3b>(j, i)[0] = g | active; 
img.at<cv::Vec3b>(j, i)[1] = g & ~active; 
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Tech. 3: Bulk Memory Copy 

• Instead of copying pixels by iterating through the memory, 
you can try memcpy 
 

• Using this is possible only when the copied data are stored in 
a continuous area of memory 

• e.g.: To copy a sub rectangle in an image, memcpy must 
be done line by line 
 

•memset sometimes will be also useful 
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Results (each part) 
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• Spec: Core i7-4600U 2.1 GHz, 16 GB memory 
• Some work better; Some work worse! 

Errorbars show standard deviations 
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Note: Row or Column Major Access 

row major 

column major 

local/continuous memory access >>>> global/random access 

for (j = 0; j < height; j++) { 
    for (i = 0; i < width; i++) { 
        image.at<uchar>(j, i) = ... 
   
    } 
} 

for (i = 0; i < width; i++) { 
    for (j = 0; j < height; j++) { 
        image.at<uchar>(j, i) = ... 
  
    } 
} 

cv::Mat stores data in row-major order 
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Results (each part) 
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row major column major 
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Outline 

• Local Optimization of Coding 
 

• Pixel Access Methods 
 

• Loop Optimization 
 

• Parallel Processing 
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Tech. 4: Pixel Access Methods 

add, sub, logic >> multiplication >>>>>>>> division 

for (j = 0; j < height; j++) { 
    for (i = 0; i < width; i++) { 
        image.at<uchar>(j, i) = ... 
   
    } 
} 

for (j = 0; j < height; j++) { 
    uchar *ptr = image.ptr<uchar>(j); 
    for (i = 0; i < width; i++) { 
        ptr[i] = ...    
    } 
} 

width * j + i 

ptr + i 

0 
1 
2 
3 
 
j 

image 

image.ptr<..>(j) 
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Results (each part) 
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In my environment (Visual Studio 2012), treating a color pixel (cv::Vec3b) 
in bulk like   outp[i] = cv::Vec3b(255, 0, 0);  
is ridiculously slow 
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Outline 

• Local Optimization of Coding 
 

• Pixel Access Methods 
 

• Loop Optimization 
 

• Parallel Processing 
 



19 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems  2016 (7) 

Tech. 5: Loop Fusion 

local/continuous memory access >>>> global/random access 
mutually-independent instructions >>> dependent instructions 

for (j = 0; j < height; j++) { 
    for (i = 0; i < width; i++) { 
        f(...);  
    } 
} 
for (j = 0; j < height; j++) { 
    for (i = 0; i < width; i++) { 
        g(...);  
    } 
} 
 

for (j = 0; j < height; j++) { 
    for (i = 0; i < width; i++) { 
        f(...); 
        g(...);  
    } 
} 

• smaller loop overheads 
• improved memory 

locality 
• more independent 

instructions within a loop 
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Tech. 6: Loop Unrolling 

mutually-independent instructions >>> dependent instructions 

for (i = 0; i < N; i++) { 
    f(i, ...) = ...  
} 
 

for (i = 0; i < N; i += 4) { 
    f(i, ...) = ...  
    f(i+1, ...) = ... 
    f(i+2, ...) = ... 
    f(i+3, ...) = ... 
} 
 

• smaller loop overheads 
• more independent 

instructions within a loop 
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Results (total) 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

OpenCV
naive

pixel access by ptr

loop fused

loop fused except memcpy

loop unrolled

tim
e 

[m
s]



22 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems  2016 (7) 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

OpenCV
naive

pixel access by ptr

loop fused

loop fused except memcpy

loop unrolled

tim
e 

[m
s]



23 Shingo Kagami (Tohoku Univ.) Intelligent Control Systems  2016 (7) 

Outline 

• Local Optimization of Coding 
 

• Pixel Access Methods 
 

• Loop Optimization 
 

• Parallel Processing 
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Tech. 7: Multi-Threading 

#pragma omp parallel for num_threads(4) 
for (j = 0; j < height; j++) { 
    for (i = 0; i < width; i++) { 
        image.at<uchar>(j, i) = ...    
    } 
} 

• Image processing in general has high data parallelism, and 
thus parallel processing is effective 

• One of the easiest way is to parallelize for loops into 
multiple threads using OpenMP 

• Threads will be executed in multiple cores 
• Visual C++ supports OpenMP by default 

•Config. properties – C/C++ – Language – OpenMP 
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Tech. 8: SIMD Extensions 
• SIMD: Single Instruction stream, Multiple Data stream 

cf. MIMD 
• Many recent processors have extended instruction set to 

perform SIMD operations 
• MMX, SSE, AVX (intel)  

 
• In SSE, eight 128-bit registers (xmm0, ... xmm7) are used 

• sixteen 8-bit data, eight 16-bit data, four 32-bit data, or two 64-bit 
data are processed at a time 

xmm0 

xmm1 

+ + + + 

128 bit 

32-bit float 
or 

32-bit integer 



How to Program 
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In happiest case, your compiler may use SIMD automatically 

for (int j = 0; j < height; j++) { 
    uchar *img_ptr = image.ptr<uchar>(j); 
    for (int i = 0; i < width; i++) { 
        img_ptr[i] = 255 - img_ptr[i]; 
    } 
} Visual Studio 2012 (x64) generates SIMD for this code 

for (int j = 0; j < height; j++) { 
    uchar *img_ptr = image.ptr<uchar>(j); 
    for (int i = 0; i < width; i++) { 
        img_ptr[i] = ~img_ptr[i]; 
    } 
} But it doesn’t for this! 
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How to Program 

float sum = 0.0f; 
for (i = 0; i < N; i++) { 
    sum += w[i] * x[i]; 
} 

__m128 sum = _mm_setzero_ps(); 
for (i = 0; i < N; i += 4) { 
    __m128 ws = _mm_loadu_ps(&w[i]); 
    __m128 xs = _mm_loadu_ps(&x[i]); 
    sum = _mm_add_ps(sum, _mm_mul_ps(ws, xs)); 
} 
... 

Use compiler intrinsics: easiest way to explicitly use SIMD 
•common for Visual C++ and GCC 
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Results (each part) 
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Note the large deviation when OpenMP is enabled 
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Results (total) 
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Summary 

• Pixel Scan Order 
• Pixels should be accessed in the order in which they are 

stored (row major in OpenCV) 
• Pixel Access Methods 

•at() is slow!  Using ptr() instead significantly improves 
the performance  

• Other Optimizations 
• strength reduction, table lookup, loop fusion, loop unrolling 

• Parallel Processing 
• OpenMP, SIMD extension, (GPU was not mentioned today) 

• Some work fine; Some do not (Some may work even worse)  
• Trial & error are needed 
• Trade-off between performance and maintainability 
• Too early optimization should be avoided 
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Sample codes are  available at 
http://www.ic.is.tohoku.ac.jp/~swk/lecture/  

 


