Intelligent Control Systems

Cameras and Image Sensors

Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp

http://www.ic.is.tohoku.ac.jp/ja/swk/

Basic Motivation

e.g. Vision-based Control of Robots

robot control

Schedule (tentative)

June 7: Cameras and Image Sensors June 14: Image Processing Fundamentals * June 21 and 25 (Sat.): canceled June 28: Basic Image Processing (1) July 5: Basic Image Processing (2) July 12: Object Tracking (1) July 19: Object Tracking (2)

July 26: Speeding-Up Image Processing

Outline

- Lens and Optical Parts
- Image Sensors
 - CCD / CMOS sensors
 - Integration / Shutter Modes
- In-Camera Image Processing
- Image Data Transfer
- Dynamic Range Enhancement

Cameras and Image Sensors

Examples

Example

Example

Camera and Lens

Cameras with unremovable lens

• most of inexpensive web cameras

Cameras with removable lens

- Nikon F-mount (large aperture size)
- C-mount (small aperture, long flange back)
- CS-mount (same aperture with C-mount, short flange back)
- The lens must be selected considering the imager size
 - 1", 2/3" 1/2", 1/3", 1/4"
 - 1" corresponds approx. to diagonal length D = 16 mm
- View angle θ determined by D and focal length f
 - $tan(\theta/2) = D/2f$
- F-number: f / A (A: aperture size)
 - The smaller, the brighter but narrower depth of field

C-mount / F-mount Lenses

Pin-Hole Camera Model

- No restriction on the distance from camera to object
- Limited light amount available (dark image)

Lens formula

- More light is available than with pin hole
- Restricted distance from camera to object (Once f and s₁ are given, s₀ is uniquely determined)

Imager size, Aperture size and Focal length

Outline

- Lens and Optical Parts
- Image Sensors
 - CCD / CMOS sensors
 - Integration / Shutter Modes
- In-Camera Image Processing
- Image Data Transfer
- Dynamic Range Enhancement

Solid-State Image Sensor

Minimal Knowledge of Semiconductor Devices

Photodiode

An intuitive interpretation:

photocurrent *i*: proportional to brightness

What if ampere meter is used

- Photocurrent is very weak
 - order of pA ~ fA
 - too susceptible to noise
- Difficult to measure millions of pixels at the same time, so time division is mandatory
 - for most of the time, photocurrent is just disposed

Photo Integration

That is why we need integration:

C: capacitance of the node where the charges are integrated

Photocurrent is *integrated* over a certain integration time in a pixel while the other pixels are read out

Shot Noise

Fundamental noise in optical measurement: fluctuation in the number of the particles such as electrons and photons

$$N_{\rm shot,rms} = \sqrt{\bar{N}}$$

 $N_{\rm shot,rms}$: root mean square # of shot noise charges \bar{N} : # of signal charges

Equivalently,

$$Q_{\text{shot,rms}} = e\sqrt{\bar{N}} = e\sqrt{\bar{i}t_{\text{int}}/e} = \sqrt{e\bar{i}t_{\text{int}}}$$

- *e*: electron charge
- \vec{i} : average photocurrent plus dark current
- t_{int} : integration time

Noise and Integration time

With N times longer t_{int}, signal-to-noise ratio (SNR) is multiplied by:

- \sqrt{N} with respect to shot noise
- *N* with respect to other noise

Effects of Integration

- The longer the integration time is, the brighter the image becomes (because more photo signal is collected)
 - This is intuitive way of understanding; but it should be understood in terms of SNR
- Integration time
 Frame time: Thus high frame rate imaging makes images darker (or more correctly, noisier)
 - Strong illumination may be needed
- Motion blur is caused when the scene moves fast

Integration-mode photodiode

Schematic Description of Integration

Potential Description of Integration

Outline

- Lens and Optical Parts
- Image Sensors
 - CCD / CMOS sensors
 - Integration / Shutter Modes
- In-Camera Image Processing
- Image Data Transfer
- Dynamic Range Enhancement

CCD and CMOS image sensors

CCD: Charge-Coupled Devices CMOS: Complementary Metal-Oxide-Semiconductor

- These terms do not refer to photo detecting structures!
- Fundamental difference is "how to readout the signal charge amount"

CCD sensor:
$$\begin{array}{ccc} hv & \rightarrow & Q & \rightarrow & V \\ \hline & & \\ \hline & & \\ \end{array}$$
 within pixel
CMOS sensor: $\begin{array}{ccc} hv & \rightarrow & Q & \rightarrow & V \\ \hline & & \\ \hline & & \\ \end{array}$ within pixel

CCD and CMOS image sensors

CCD sensors	CMOS sensors
Special fabrication process	Standard CMOS process can be used (but special process is also used for high quality)
Large power dissipation (multiple high voltage required)	Low power consumption (single CMOS level voltage)
Difficult to be integrated with computational functionality	Easy to be integrated with CMOS processing circuits
High image quality - high cost	Varies from low quality – low cost to high quality – high cost

CCD (Charge-Coupled Device)

CCD Image Sensor

Interline Transfer CCD (IT-CCD)

Signals in a CCD sensor

Resetting in IT-CCD

Electronic Shutters in CCD

IT-CCD (with electronic shutter):

CMOS Image Sensor

3-transistor Active Pixel Sensor (3T-APS)

Signals in a CMOS sensor

Shutter Modes

While IT-CCDs operate in the global shutter mode, 3T-APS CMOS sensors operate in the rolling shutter mode

Rolling Shutter Example

A spinning propeller taken by an iPhone camera

http://scalarmotion.wordpress.com/2009/03/15/propeller-image-aliasing/ Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (1) 37

Techniques for High-Speed Imaging

Parallel readout / Parallel ADC

- column-parallel
- column-parallel x 2 (upper and lower)

Readout Modes

- sub frame, sub sampling
- binning (neighbor pixels are concatenated)
- (semi-)random access

Low-noise / High-sensitivity pixels

- micro lens
- back-illuminated sensor

Outline

- Lens and Optical Parts
- Image Sensors
 - CCD / CMOS sensors
 - Integration / Shutter Modes
- In-Camera Image Processing
- Image Data Transfer
- Dynamic Range Enhancement

In-Camera Processing

Color Processing (demosaicing)

Can be done by software; but it takes computation time
Can be done in camera; but it consumes 3 times transfer bandwidth

Brightness, Contrast, and Gamma

Outline

- Lens and Optical Parts
- Image Sensors
 - CCD / CMOS sensors
 - Integration / Shutter Modes
- In-Camera Image Processing
- Image Data Transfer
- Dynamic Range Enhancement

Data Transfer

8 [bits/pixel] \times 1 M [pixels/frame] \times 30 [fps] = 240 M [bps] 8 [bits/pixel] \times 1 M [pixels/frame] \times 1000 [fps] = 8000 M [bps]

interface	max. bit rate
IEEE 1394a	400 Mbps
IEEE 1394b	800 Mbps
USB 2.0	480 Mbps
USB 3.0	5000 Mbps
Gigabit Ethernet	1000 Mbps
PCI Express 3.0	8000 Mbps / Iane
Camera Link	2000 Mbps (base config.)
	5440 Mbps (full config.)
	and more (extended config.)

Outline

- Lens and Optical Parts
- Image Sensors
 - CCD / CMOS sensors
 - Integration / Shutter Modes
- In-Camera Image Processing
- Image Data Transfer
- Dynamic Range Enhancement

Dynamic Range

Dynamic range and Integration time

Simply modifying the integration time will not contribute to dynamic range enhancement.

Commonly used techniques utilize multiple integration times.

Dynamic Range Enhancement Example

References

Textbooks on Cameras and Image Sensors:

- A. Hornberg eds.: Handbook of Machine Vision, Wiley-VCH, 2006.
- R. Szeliski: Computer Vision: Algorithms and Applications, Springer, 2010.
- J. Ohta: Smart CMOS Image Sensors and Applications, CRC Press, 2007.
- E. Hecht: Optics, Pearson Education, 2002.

(in Japanese)

- 米本 和也: CCD/CMOSイメージ・センサの基礎と応用, CQ出版社, 2003.
- •相澤清晴,浜本隆之(編著): CMOSイメージセンサ,コロナ社, 2012.
- 黒田 隆男: イメージセンサの本質と基礎, コロナ社, 2012.
- ディジタル画像処理編集委員会, ディジタル画像処理, CG-ARTS協会, 2015.