実数, 文字

実数の表現

計算機の中では常に有限のビットで数値を表す

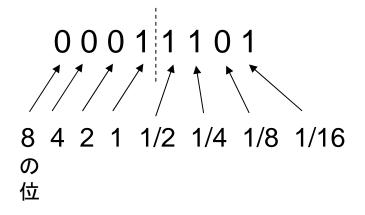
- •n ビットでは 2ⁿ 個の状態しか区別できない
- 実数も, 有限の精度, 有限の範囲でしか表現できない

精度や範囲が有限であることを理解していないとひどい目に合う

```
float x;
for (x = 0.1; x <= 1.0; x = x + 0.1) {
    printf("exp(%f) = %f\for", x, exp(x));
}</pre>
```

固定小数点数

あらかじめ決まった箇所に小数点があると考える



- 科学技術計算に必要な数値範囲を十分に表せない
- 小さな数は有効桁数が少なく、大きな数は(しばしば不必要な くらい)有効桁数が多い

浮動小数点数

いわゆる科学的記数法(指数表記)

- 6.02×10^{23}
- 1.602 × 10⁻¹⁹
 仮数部 指数部
- 仮数部は1.0以上10.0未満にする(正規化)
- 仮数部の桁数がいわゆる有効数字

これの2進数版が浮動小数点数

- 仮数部も指数も有限ビットの2進数で表す
- 指数部の底は 10 ではなく 2

IEEE 754 浮動小数点数

単精度 (C言語の float)

1 8 23-bit 符号 指数部 仮数部

倍精度 (C言語の double)

1	11	52-bit
符号	指数部	仮数部

—1.01101101 × 2¹¹⁰⁰¹¹⁰ 指数部

符号: 仮数部

0: 正 1: 負

IEEE 754: 仮数部

正規化: 1.xxxxxxxx (2) の形になるようにする(1以上, 2未満)

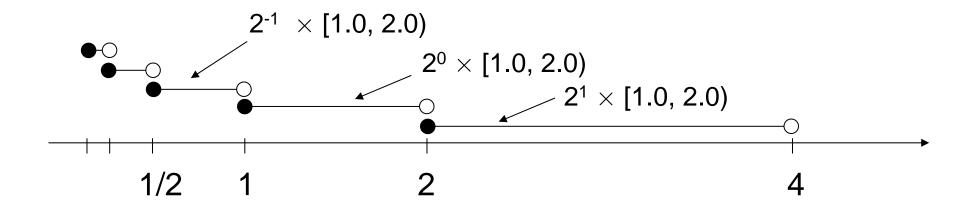
最小值: 1.0₍₂₎ = 1.0₍₁₀₎

最大值: 1.11111···₍₂₎ = 1.99999···₍₁₀₎

1の位は正規化の結果つねに1なので、仮数部には含めない (economized form, けち表現)

例: 仮数部のビット列が 0110100 … 00

- \rightarrow 1.01101₍₂₎ = (1 + 1/4 + 1/8 + 1/32)₍₁₀₎
 - $= 1.40625_{(10)}$



各区間は、223 等分(単精度)または 252 等分(倍精度)

IEEE 754: 指数部

- 指数部が n ビット長のとき, 指数に 2ⁿ⁻¹ 1 を足した値を符号なし整数として表し, 指数部に収める(biased form, ゲタばき表現)
- ◆ ただし「全ビット0」と「全ビット1」は特別扱い
 - 単精度: 指数部は8ビット長なので、バイアス値は 2⁷ 1 = 127. よって -127 ~ 128 にバイアス値を加えて符号なし数 0 ~ 255 にする. このうち全ビット0(= 0)と全ビット1(= 255) は除くので、結局、指数として可能なのは -126 ~ 127
 - 倍精度: 指数部は11ビット長なので, バイアス値は 2¹⁰ 1 = 1023. 同様に考えて, 指数として可能なのは -1022 ~ 1023

例: 単精度浮動小数点数の指数部のビット列が 10110101

- \rightarrow 10110101₍₂₎ = (128+32+16+4+1)₍₁₀₎ = 181₍₁₀₎
- → バイアス値を引いて, 181 127 = 54 が指数の値

IEEE 754: 特殊な数

指数部が全ビット 0 のとき:

指数を最小値(単精度で -126, 倍精度で -1022)とし, 仮数は1の位を 0 として仮数部から組み立てる(非正規化数, 有効桁数が落ちることに注意). 特に, 全ビットのは数のになる

指数部が全ビット1のとき:

- 仮数部が全ビット0: 無限大 (Inf)
 - •符号ビットが0, 1 のとき, それぞれ $+\infty$, $-\infty$
- ●その他の仮数部: Not a Number (NaN)
 - ●負数の平方根や, 0/0など

例: 単精度で指数部 0000 0000, 仮数部 0110100 … 00

 \rightarrow 0.40625 \times 2⁻¹²⁶

IEEE 754: 丸め

与えられた精度内で表現できない数は「近い」数に丸める. IEEE 754 は 4 つの丸めモードを定義:

- Round to nearest even (通常はこれを用いる)
 - 表現可能な値のうち最も近いものに丸める
 - ◆最も近いものが2つある場合,仮数部のLSBが0のものを選ぶ
- Towards zero
- Towards positive infinity
- Towards negative infinity

例

10進数 3.25 → 単精度浮動小数点数

- •3.25 は 21 以上, 22 未満. よって指数は 1
- ●バイアス値 127 を履かせて, 指数部は 128₍₁₀₎ = 1000 0000
- $3.25 = 1.625 \times 2^{1}$
- $1.625 = 1 + 1/2 + 1/8 = 1.101000 \cdots 00_{(2)}$
- ●よって仮数部は 101000 … 000
- 正なので符号ビットは 0
- まとめると, 0 1000 0000 101000 ··· 000

例

10進数 0.1 → 単精度浮動小数点数

- 0.1 は 2-4 以上, 2-3 未満. よって指数は -4
- ●バイアス値 127 を履かせて, 指数部は 123₍₁₀₎ = 0111 1011
- $0.1 = 1.6 \times 2^{-4}$
- 1.6 = 1 + 1/2 + 1/16 + ... と考えてみてもすぐに分解できそうにないので、真面目に 16/10 または 8/5 などを2進数で筆算してみるとよい. すると 1.10011001100… (2) と循環することがわかる.
- ●仮数部は 23 ビット長なので, 1001 1001 1001 1001 1000 までは入り, 以降の 1100... が丸められる. round to nearest により切り上げ.
- 正なので符号ビットは 0

加減算

- 1. 桁あわせ: 絶対値の大きな方の指数部に合わせる
- 2. 仮数部の加減算
- 3. 正規化
- 4. 丸め(必要に応じて再度正規化)
- 5. 符号をセット

$$1.5 \times 2^8 + 1.75 \times 2^6$$

= $(1.5 + 0.4375) \times 2^8$
= 1.9375×2^8

乗除算

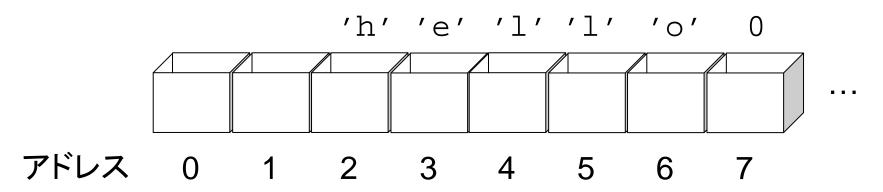
- 1. 指数部の加減算
- 2. 仮数部の乗除算
- 3. 正規化
- 4. 丸め(必要に応じて再度正規化)
- 5. 符号をセット

$$(1.5 \times 2^{8}) \times (1.75 \times 2^{6})$$

= $(1.5 \times 1.75) \times 2^{8+6}$
= 2.625×2^{14}
= 1.3125×2^{15}

文字と文字列

char text[] = "hello";



「文字」も数字の組み合わせで表現

例) ASCIIコード 1 文字を 1 バイト (ただし下位 7 ビットのみを使用) で表す.

Cでは、文字は char 型で、文字列は char の配列型で表す、文字列の終端を示すために O(Y Y O Y) を用いる.

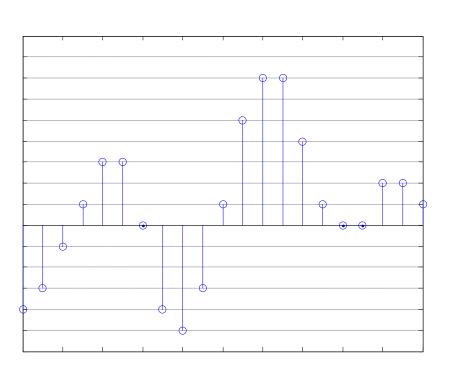
例: ASCIIコード表

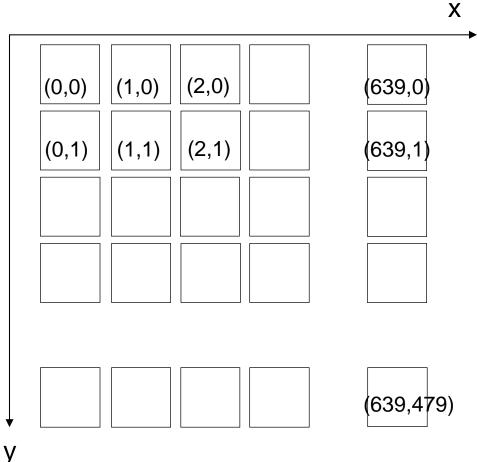
	上位3ビット											
下位4ビット		0	1	2	3	4	5	6	7			
	0	NUL	DLE	SP	0	@	Р	`	р			
	1	SOH	DC1	!	1	Α	Q	а	q			
	2	STX	DC2	•	2	В	R	b	r			
	3	EIX	DC3	#	3	O	S	С	S			
	4	EOT	DC4	\$	4	D	Т	d	t			
	5	ENQ	NAC	%	5	Е	U	е	u			
	6	ACK	SYN	&	6	F	٧	f	V			
	7	BEL	ETB	-	7	G	W	g	W			
	8	BS	CAN	(8	Ι	X	h	X			
	9	HT	EM)	9	_	Υ	i	у			
	Α	LF/NL	SUB	×	:	7	Z	j	Z			
	В	VT	ESC	+	-:-	K	[k	{			
	С	FF	FS	- 1	<	L	\	- 1	1			
	D	CR	GS	9	=	Μ]	m	}			
	Е	SO	RS		^	Ν	^	n	~			
	F	SI	US	/	?	0	-	0	DEL			

http://itpro.nikkeibp.co.jp/article/COLUMN/20060929/249401/

その他のデータ

音声も画像も数値の集まりとして表現 すべてのものはビットの集まりである





練習問題

IEEE 754 単精度浮動小数点数フォーマットにおいて、仮数部のみ 5 ビット長に変更したものを考える. 丸めは 0 方向へ行うものとする.

- 1) 以下の10進数をこのフォーマットの浮動小数点数で表せ(a) x = 20.1 (b) y = 1.1
- 2) 上の数 x, y に対して以下の浮動小数点数演算を行い, その 過程を示せ (a) x + y (b) xy

練習問題 解答例

- 1) (a) 20.1 は 24 以上 25 未満. よって指数は 4
 - ●バイアス値 127 を履かせて, 指数部は 131₍₁₀₎ = 1000 0011
 - 20.1 = 1.25625×2^4
 - ●1.25625 = 1 + 1/4 + 1/256 + ···= 1.01000 ···₍₂₎ ●「0 方向への丸め」なので、仮数部5ビットは 01000

 - ●符号ビット 0 をつけて、答えは 0 1000 0011 01000
 - (b) 1.1 は 2⁰ 以上 2¹ 未満. よって指数は 0
 - ●バイアス値 127 を履かせて, 指数部は127₍₁₀₎ = 0111 1111
 - $1.1 = 1 + 1/16 + 1/32 + \cdots = 1.00011 \cdot \cdot \cdot_{(2)}$
 - ●符号ビット 0 をつけて、答えは 0 0111 1111 00011
- 2) (a) $1.01000_{(2)} \times 2^4 + 1.00011_{(2)} \times 2^0$ $= (1.01000 + 0.000100011) \times 2^4 = 1.01010 \times 2^4$
 - (b) $1.01000_{(2)} \times 2^4 \times 1.00011_{(2)} \times 2^0$ $= 1.01011111 \times 2^{4} = 1.01011 \times 2^{4}$