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Agenda

• Template Matching by Brute-force Search

• Template Matching by Gradient-based Search

• Optical Flow Computation

• Lucas-Kanade method for General Warps
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Visual Tracking
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input image template image Tx,y

• Evaluate a similarity measure or a dissimilarity measure for 
every possible position

Matching Problem:
Find the area with the best 
similarity to the template

Matching is often called 
"tracking" when it is 
sequentially done with time

x
y



Detection vs Tracking
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Matching problem is called detection when:
Target object is found out of the entire image without 
relying on knowledge in previous frames

• If we detect the target object every frame, it can be 
regarded as a kind of tracking (Tracking by Detection)

• However, detection is usually computationally demanding

Hence, when real-time tracking is needed, we usually try to 
utilize our knowledge in previous frames; Once failed, we fall 
back to detection



Feature-based Methods vs Direct Methods
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direct comparison of 
pixel values

comparison of feature values 
computed from images (e.g. 

histograms, edge positions, …)



Direct Methods Illustrated
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Minimum point of 
dissimilarity measure
(In this example, sum 
of squared difference 
of pixel intensities)
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Examples of Evaluation Functions

: sum of squared differences
→ min

: sum of absolute differences
→ min

: cross correlation 
→ max

: normalized cross correlation
→ max

average
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→ 03_template_match_2d.py 

For Detection: 
search area is set to the 
entire image

For Tracking: 
search area is set at 
around the position in the 
previous frame (or a 
position predicted from 
previous frames)

input image

template image

search area



Gradient-based Optimization
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T(x, y)Iw(x, y)

I(x, y) Iw(x, y) := I(x0 + x, y0 + y)

y0

(px, py)

x0

Instead of brute force search for the minimum, let us consider application 
of Gauss-Newton optimization method to 



Lucas-Kanade Method (forward algorithm)
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1st order approximation is applied and partial derivatives are equated to 0: 

By solving the following equation, motion vector (px, py) is obtained
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• (px, py) is only approximately obtained because of the 1st

order Taylor approximation. We usually need to iteratively 
run the above process by updating

x0 := x0 + px
y0 := y0 + py

and obtaining Iw(x, y) := I(x0 + x, y0 + y) with new (x0, y0)

• Because Iw changes, the derivatives and their products 
must be recomputed for each iteration



Inverse Algorithm
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T(x, y)Iw(x, y)

I(x, y)

The recomputation of derivatives and their products can be 
avoided by exchanging the role of T and Iw

Iw(x, y) := I(x0 + x, y0 + y)

(px, py)
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After solving (px, py), redefine Iw() by updating as
x0 := x0 – px
y0 := y0 – py

and resample Iw(x, y) with the new (x0, y0)
→ 03_lucas_kanade_2d.py 
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Application to Optical Flow Computation

Distribution of the motion vectors over the image is called 
optical flow

• Sometimes the terms “motion vector” and “optical flow” 
are used interchangeably (depending on the context)
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Optical Flow Constraint

x

y

Assuming that the intensity of the tracked point is constant and 
ignoring 2nd order or higher terms,  

This single equation is not 
enough to determine the two 
components

[Horn and Schunck 1981]
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Interpretation of the Constraint

With

Only the component in the 
direction of the gradient vector is 
determined (aperture problem)

unit 
gradient 
vector

where is a unit vector
parallel to 
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Additional Assumptions

Thus we cannot determine the optical flow from Ix, Iy and It.  
Additional assumptions are needed.

ex1) Optical flow changes smoothly in space
• [Horn and Schunck 1981]

ex2) Optical flow is constant within a small 
neighborhood of a point

• Hence the problem comes down to tracking of 
small blocks 
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What is Good Point to Track

A

C
B

Recall that we aggregate many flows within a small block to 
obtain enough constraints

A: Block with constant intensity is not suitable (0 constraint)
B: Block including only edges with the same direction is 

also not suitable (essentially 1 constraint) 
How to find a block like C?
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Consider two blocks
• around a point of interest (x0, y0)
• around the point (x0 + dx, y0 + dy)

These two blocks should not resemble each other for any 
choice of (dx, dy)
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Let’s measure how they do not resemble by SSD

With 1st order Taylor expansion, 
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dx

dy

E(dx,dy) = 1E(dx,dy)

• This is an ellipse in (dx, dy) plane.  This ellipse should be as 
small as possible and should be close to true circle.

i.e.: Eigenvalues λ1, λ2 of H should be large enough and 
close to each other.

• Compatible with numerical stability in solving Lucas-Kanade.

Let us consider an equation
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(Notes just in case you forget linear algebra)

Because H is symmetric, H can be diagonalized by an 
orthonormal matrix P (i.e. P-1 = PT)  so that PT H P = diag(λ1, λ2)

Viewed in a new coordinate system  z = PT (dx, dy)T

Or, equivalently
z1

z2
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Feature Point Detector

flat edge

ed
ge feature 

point

1λ

2λHarris operator
[Harris and Stephens 1988]

Good Features to Track
[Tomasi and Kanade 1991]

det H – k(tr H)2

These “good” points for 
tracking and/or matching are 
called feature point, interest 
point, keypoint and so on.

λ1

λ2



KLT Tracker
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• Lucas-Kanade method applied to “Good-features-to-track” points is 
often called KLT (Kanade-Lucas-Tomasi) tracker

03_klt_flow.py 



Other Feature Point Detectors
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SIFT detector [Lowe 2004]
• Build a Gaussian scale space and apply (an approximate) 

Laplacian operator in each scale
• Detect extrema of the results (i.e. strongest responses among 

their neighbor in space as well as in scale)
• Eliminate edge responses
• (Often followed by encoding of edge orientation histogram in the 

neighborhood into a fixed-size vector, called a feature point 
descriptor, which can be compared with each other by Euclidean 
distance)

FAST detector [Rosten et al. 2010]

• Heuristics based on pixel values along a surrounding circle
• Optimized for speed and quality by machine learning approach



Generalization to Different Warps
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T(x, y)Iw(x, y)
w

What kind of modifications are needed?



2 DoF Lucas-Kanade Revisited
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Jacobian matrix error vector
(Gauss-Newton 
approximation of)
Hessian matrix

1st pixel
2nd pixel
…



Warps and Their Parametrizations
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p = [tx, ty]

p = [tx, ty,θ]

For convenience, we 
usually define the 
parameters such that p = 0
corresponds to identity 
warp



Warp Functions and Their Derivatives
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Inverse “Additive” Algorithm
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Then, resample Iw by updating the parameters as p0 := p0 – p   … Is this OK?

Warp the input image with parameter p0 to obtain Iw

This works for 2D translation, but not always for general warps

1st pixel
2nd pixel
…
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T(x, y)Iw(x, y)

I(x, y)

Is it OK if we resample Iw at new position and orientation 
(+10, 0, 0)?
=> Obviously no.

(px, py, pθ) = (-10, 0, 0)



Inverse Compositional Algorithm
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Instead of updating the warp parameters additively,  the warp is 
compositionally updated [Baker & Matthews 2004]: 

T(x, y)Iw(x, y)

w wp
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–

for each 
pixel i

template

warped
input
image

# pixels

# paramsprecomputed

gradient images

03_lucas_kanade_homography.py 



Other Choices of Optimization Methods
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Other optimization methods

• Levenberg-Marquardt method

• Efficient Second-order Minimization method [Banhimane and Malis
2007]

I  : identity matrix
λ : scalar coefficient

(small λ : Gauss-Newton, large λ : steepest descent)

J1: derivative of template image w.r.t. param. 
J2: derivative of current warped image w.r.t. param.
(Possible when parametrized with special care)
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