#### Intelligent Control Systems

Image Processing (2)

— Filtering, Geometric Transforms and Colors —

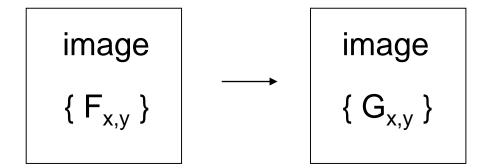
Shingo Kagami
Graduate School of Information Sciences,
Tohoku University
swk(at)ic.is.tohoku.ac.jp

http://www.ic.is.tohoku.ac.jp/ja/swk/

# Taxonomy

| input | output              | example                   |
|-------|---------------------|---------------------------|
| image | image<br>(2-D data) | image-to-image conversion |
|       | 1-D data            | projection, histogram     |
|       | scalar values       | position, object label    |

#### Image to Image



point operation

G<sub>i,j</sub> depends only on F<sub>i,j</sub>

(thresholding, pixel value conversion, ...)

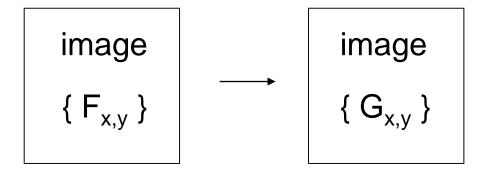
local operation / neighboring operation

 $G_{i,j}$  depends on pixels within some neighborhood of  $F_{i,j}$ 

global operation

 $G_{i,j}$  depends on almost all the pixels in  $\{F_{i,j}\}$ 

### Image to Image



point operation

G<sub>i,j</sub> depends only on F<sub>i,j</sub>

local operation / neighboring operation

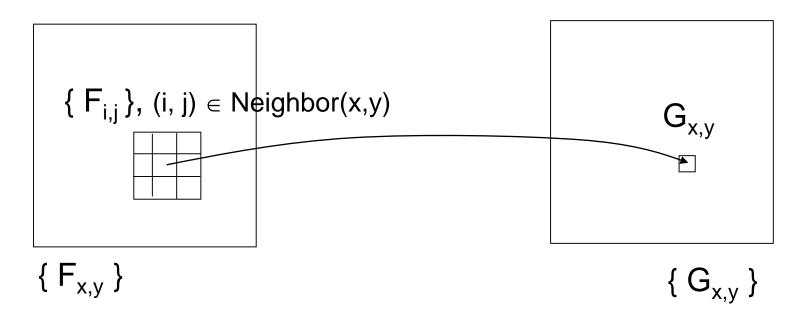
G<sub>i,j</sub> depends on pixels within some neighborhood of F<sub>i,j</sub>

global operation

 $G_{i,j}$  depends on almost all the pixels in  $\{F_{i,j}\}$ 

### Local operation example: Spatial Filter

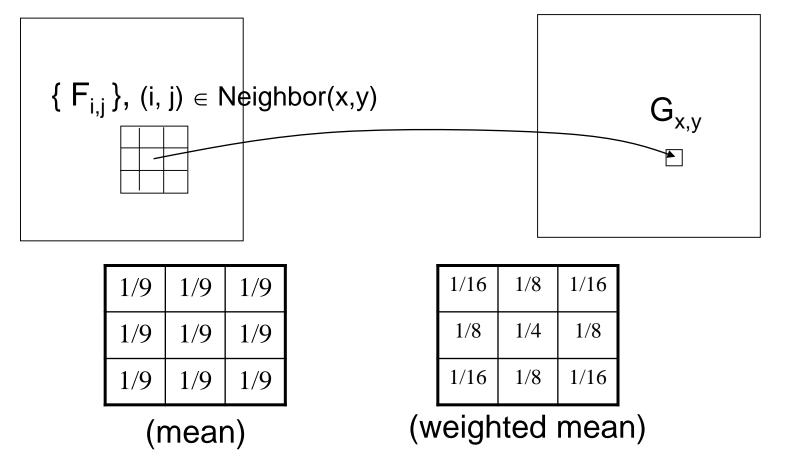
 $G_{x,y}$  depends on some neighborhood (e.g.  $3\times3$ ,  $5\times5$  pixels, etc.) of the point of interest (x,y)



Typical examples: smoothing, edge detection

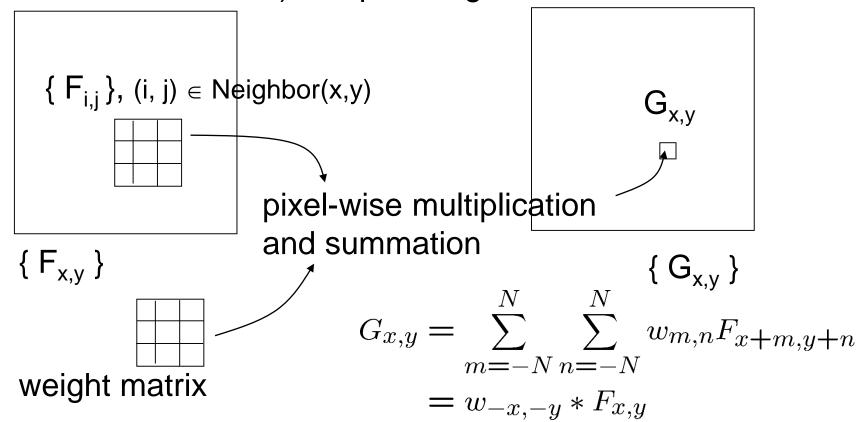
### Important Example: Smoothing

- Output at (x, y): some representative value of the set of neighbor pixels around (x, y), e.g. mean, weighted mean, median
- Used for: e.g. noise reduction, scale-space processing



### Linear Spatial Filtering

- Smoothing with (weighted) mean is an example of linear spatial filtering (while smoothing with median is nonlinear)
- Computed by convolving a weight matrix (filter coefficients, filter kernel, or mask) to input image



#### Examples of 3x3 smoothing weight matrices

| 1/9 | 1/9 | 1/9 |
|-----|-----|-----|
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |

| 1/10 | 1/10 | 1/10 |
|------|------|------|
| 1/10 | 1/5  | 1/10 |
| 1/10 | 1/10 | 1/10 |

| 0   | 1/8 | 0   |
|-----|-----|-----|
| 1/8 | 1/2 | 1/8 |
| 0   | 1/8 | 0   |

- 11

| 1 | 1 | 1 |
|---|---|---|
| 1 | 2 | 1 |
| 1 | 1 | 1 |

### Implementation of 3x3 filtering

```
02_filter3x3.py:
weight = 1.0/8 * np.array([[0, 1, 0],
                            [1, 4, 1],
                            [0, 1, 0]
for j in range(1, height - 1): ←
    for i in range(1, width - 1):
                                  Generates [1, 2, ..., height - 2]
    sum = 0.0
                                  (a lazy way of boundary handling)
    for n in range(3):
        for m in range(3):
            sum += weight[n, m] * src[j + n - 1, i + m - 1]
    dest[j, i] = int(saturate(sum))
```

Unlike the mathematical definition, the center coordinate of weight is not (0, 0) but (1, 1)

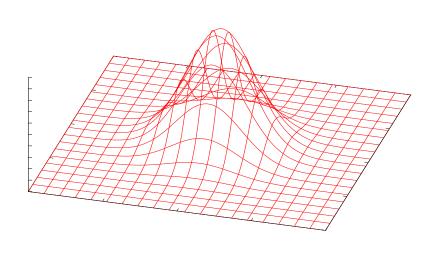
### OpenCV functions for common filters

```
cv2.filter2D()
cv2.GaussianBlur()
cv2.Sobel()
cv2.Laplacian()
...

cv2.medianBlur()
cv2.dilate()
cv2.erode()
...
```

#### Gaussian: most widely used smoothing kernel

$$\begin{split} g_{\sigma}(x,y) &= \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{x^2}{2\sigma^2}\} \cdot \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{y^2}{2\sigma^2}\} \quad \text{separable} \\ &= \frac{1}{2\pi\sigma^2} \exp\{-\frac{x^2+y^2}{2\sigma^2}\} \end{split}$$



- Discretized in space for computation
- Coefficient values are sometimes rounded to integer (for efficiency)
- Amount of smoothing can be controlled by parameter σ (large σ requires large matrix size)

### Frequency-domain understanding

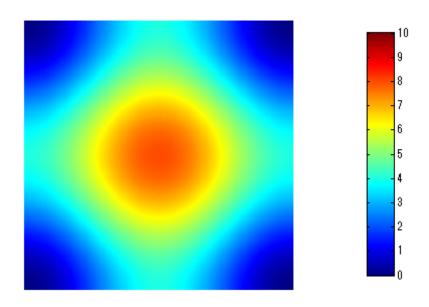
$$G_{x,y} = \sum_{m=-N}^{N} \sum_{n=-N}^{N} w_{m,n} F_{x+m,y+n}$$
$$= w_{-x,-y} * F_{x,y} \xrightarrow{\mathcal{F}} \mathcal{F} [w_{-x,-y}] \cdot \mathcal{F} [F_{x,y}]$$

 $\mathcal{F}[\cdot]$ : 2-D discrete Fourier transform

02\_filter3x3\_fft.py:

| 0 | 1 | 0 |
|---|---|---|
| 1 | 4 | 1 |
| 0 | 1 | 0 |

(zero-padded to 256x256 and)



Recall: Fourier transform of Gaussian function is Gaussian

# **Edge Detection**

Spatial differentiation (approximated by finite difference)

| 0  | 0 | 0 |
|----|---|---|
| -1 | 0 | 1 |
| 0  | 0 | 0 |

1st order diff. in x direction

| 0 | -1 | 0 |
|---|----|---|
| 0 | 0  | 0 |
| 0 | 1  | 0 |

1<sup>st</sup> order diff. in y direction

Often combined with smoothing:

| -1 | 0 | 1 |
|----|---|---|
| -2 | 0 | 2 |
| -1 | 0 | 1 |

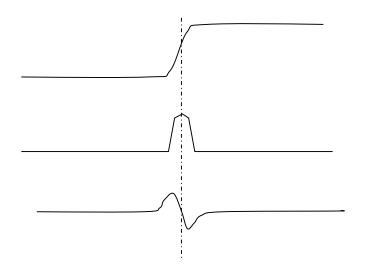
Sobel filter in x direction

| -1 | -2 | -1 |
|----|----|----|
| 0  | 0  | 0  |
| 1  | 2  | 1  |

Sobel filter in y direction

# Edge detection by 2<sup>nd</sup> order derivative

- Edge = zero crossing of 2<sup>nd</sup> order derivative
- Laplacian  $\partial^2/\partial x^2 + \partial^2/\partial y^2$  is the lowest-order isotropic differential operator
  - does not depend on direction of edges

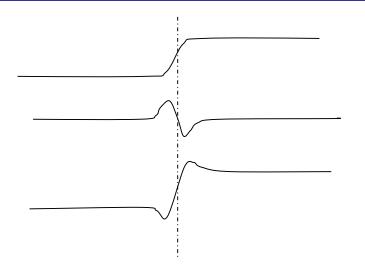


 Laplacian operator is realized by adding 2<sup>nd</sup> order differentials f<sub>i+1</sub> - 2 f<sub>i</sub> + f<sub>i-1</sub> of x and y directions

| 0 | 1  | 0 |
|---|----|---|
| 1 | _4 | 1 |
| 0 | 1  | 0 |

### Sharpening

Subtract the Laplacian image from the original image to yield an edge-enhanced image

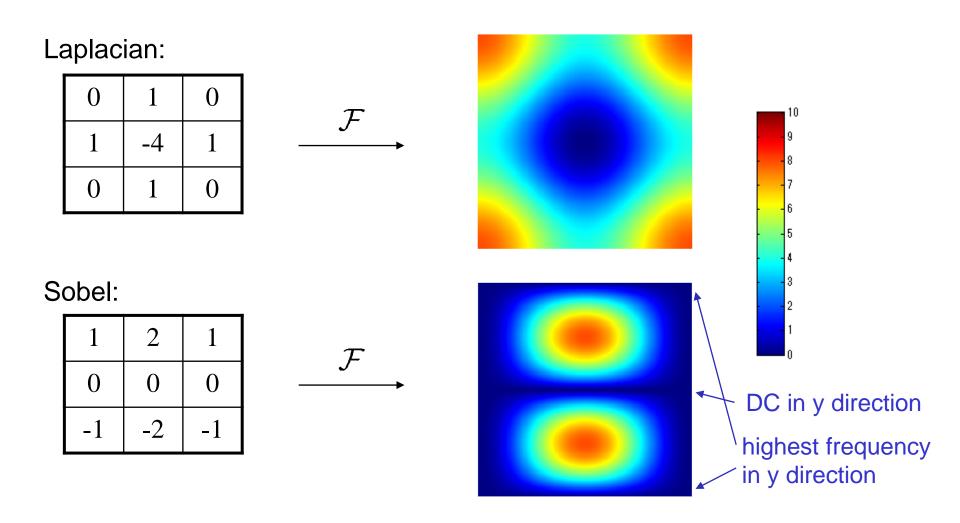


| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |

| 0 | 1  | 0 |
|---|----|---|
| 1 | -4 | 1 |
| 0 | 1  | 0 |

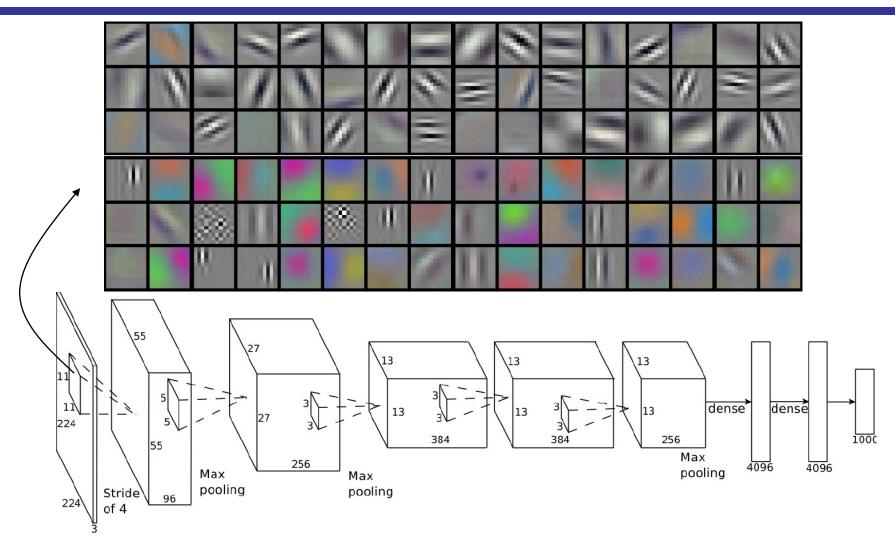
| 0  | -1 | 0  |
|----|----|----|
| -1 | 5  | -1 |
| 0  | -1 | 0  |

### Frequency-domain visualization



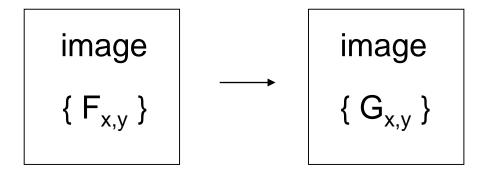
Q: Why is Sobel a band-pass filter instead of high-pass?

### Deep Convolutional Neural Networks



Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012.

### Image to Image



point operation

G<sub>i,j</sub> depends only on F<sub>i,j</sub>

local operation / neighboring operation

 $G_{i,j}$  depends on pixels within some neighborhood of  $F_{i,j}$ 

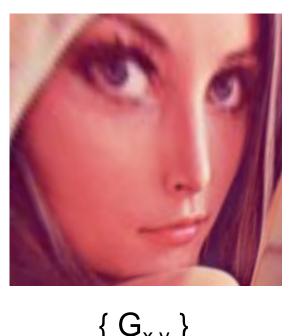
#### global operation

 $G_{i,j}$  depends on almost all the pixels in  $\{F_{i,j}\}$ 

### Global operation example: Warping

#### 02\_warp.py:





 $\{G_{x,v}\}$ 

•  $G_{x,y}$  is sampled from  $F_{x',y'}$  where (x', y') is determined from (x, y)

### Important Geometric Transforms

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

**Translation** 

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha \cos \theta & -\alpha \sin \theta & t_x \\ \alpha \sin \theta & \alpha \cos \theta & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Similarity Transform

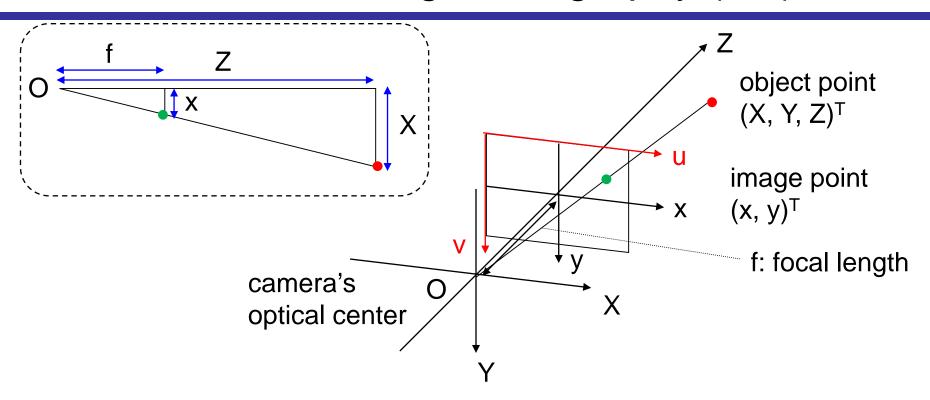
$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Affine Transform

$$s \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Homography Transform (Perspective Transform) (Collineation)

# Understanding Homography (1/3)



$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{f}{Z} \begin{pmatrix} X \\ Y \end{pmatrix}$$

X-Y-Z: camera coordinate frame x-y: (normalized) image coordinate frame

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} k_u x + c_u \\ k_v y + c_v \end{pmatrix}$$

u-v: image coordinate (pixel coordinate) frame

# Understanding Homography (2/3)

By substituting 
$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{f}{Z} \begin{pmatrix} X \\ Y \end{pmatrix}$$
 into  $\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} k_u x + c_u \\ k_v y + c_v \end{pmatrix}$ 

$$Z \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} fk_u & 0 & c_x \\ 0 & fk_v & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = A \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

A: 3x3 camera intrinsic matrix

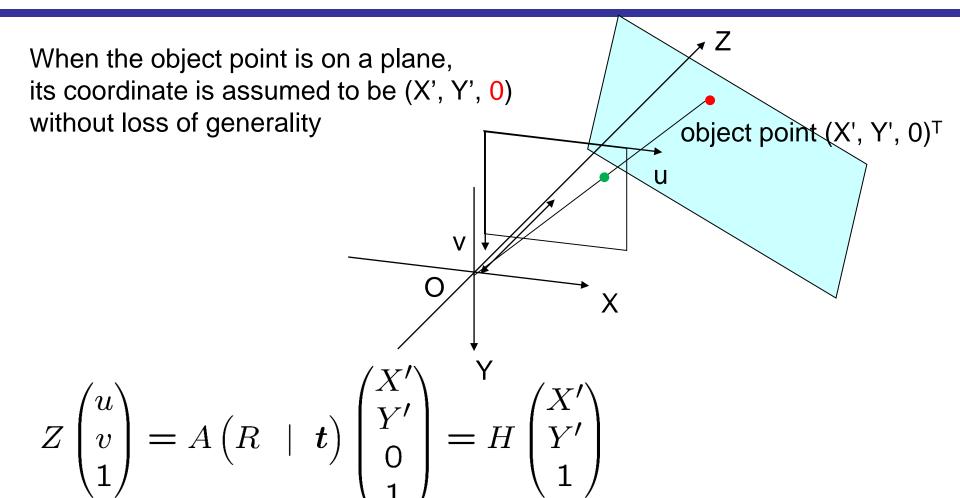
For an arbitrary object coordinate frame X'-Y'-Z',

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} R & | & \mathbf{t} \end{pmatrix} \begin{pmatrix} X' \\ Y' \\ Z' \\ 1 \end{pmatrix}$$

R: 3x3 rotation matrix

t: 3D translation vector

# Understanding Homography (3/3)



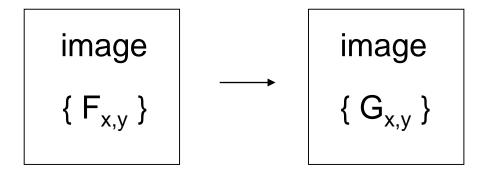
- H determines bijective mapping between (u, v) and (X', Y')
- H is computed when n (n ≥ 4) corresponding points are given

### Homography Warping by OpenCV

```
02_warp.py:
```

```
src_pnts = np.array([[100, 100],
                      [200, 100],
                      [200, 200],
                      [100, 200]],
                                                   4 points [X, Y]'s
                     np.float32)
dest size = 256
dest_pnts = np.array([[0, 0],
                       [dest_size - 1, 0],
                       [dest_size - 1, dest_size - 1],
                       [0, dest size - 1]],
                                                  4 points [X', Y']'s
                      np.float32)
H = cv2.getPerspectiveTransform(src_pnts, dest_pnts)
output = cv2.warpPerspective(input, H, (dest_size, dest_size))
```

### Image to Image



#### point operation

 $G_{i,j}$  depends only on  $F_{i,j}$ 

(thresholding, pixel value conversion, ...)

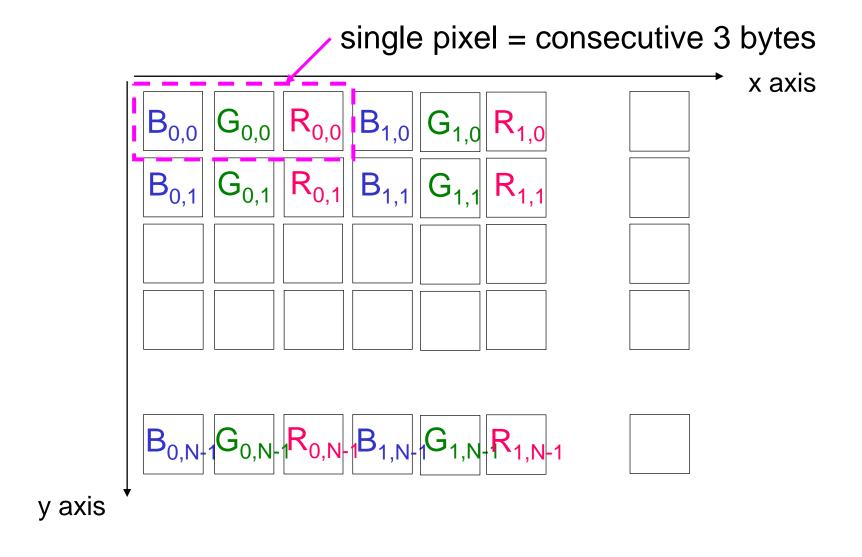
local operation / neighboring operation

G<sub>i,j</sub> depends on pixels within some neighborhood of F<sub>i,j</sub>

global operation

 $G_{i,j}$  depends on almost all the pixels in  $\{F_{i,j}\}$ 

### Color Image Representation



#### Representation in OpenCV for Python (NumPy)

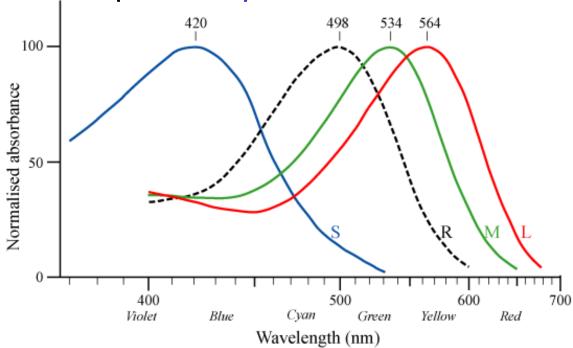
(Y, X) array with 3 channels (or, (Y, X, 3) tensor) is used

```
fruits = cv2.imread('fruits.jpg')
fruits.shape
  -> (480, 512, 3)
fruits[100, 100]
  -> array([ 52, 98, 116], dtype=uint8)
fruits[100, 100, 0]
 -> 52
```

### **RGB Color Space**

#### Why R, G, and B?

- Our eyes have three types of wavelength-sensitive cells (cone cells)
  - cf. rod cells
- So, the color space we perceive is three-dimensional



http://commons.wikimedia.org/wiki/File:Cone-response.png

### Other Color Spaces

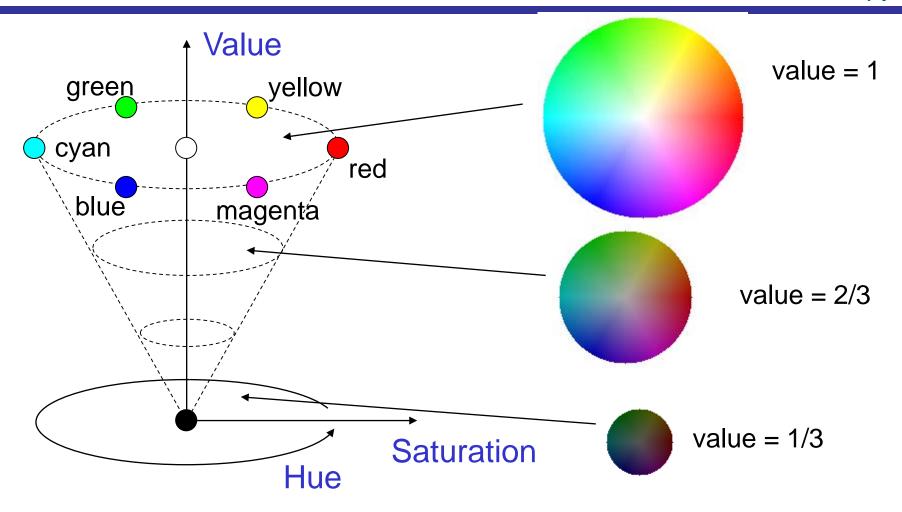
```
XYZ, L*a*b, L*u*v
defined by CIE (Commission Internationale de l'Eclairage)
YIQ, YUV, YCbCr
used in video standards (NTSC, PAL, ...)
HSV (HSI, HSL)
based on Munsell color system
```

cf. CMY, CMYK (for printing; subtractive color mixture)

output = cv2.cvtColor(input, cv2.COLOR\_BGR2HSV)

### **HSV Color Space**

02\_hsv\_illustrated.py 02\_convert\_color.py



Common Definition:  $0 \le Hue \le 360$ ,  $0 \le Saturation \le 1$ ,  $0 \le Value \le 1$ 

OpenCV (uint8):  $0 \le Hue \le 180$ ,  $0 \le Saturation \le 255$ ,  $0 \le Value \le 255$ 

#### References

#### Reference manuals for OpenCV and NumPy are in:

- https://docs.opencv.org/
- http://www.numpy.org/
- R. Szeliski: Computer Vision: Algorithms and Applications, Springer, 2010. (コンピュータビジョン, アルゴリズムと応用, 共立出版, 2013)
- A. Kaehler, G. Bradski: Learning OpenCV 3, O'Reilly, 2017. (詳解 OpenCV 3, オライリー・ジャパン, 2018)
- ディジタル画像処理編集委員会, ディジタル画像処理, CG-ARTS協会, 2015.