Intelligent Control Systems

Visual Tracking (1) — Tracking of Feature Points and Planar Rigid Objects —

> Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp

http://www.ic.is.tohoku.ac.jp/ja/swk/

Outline

- Tracking of a Point
- Block Matching
- Gradient Methods
- Feature Point Detector

Tracking of "a Point"

To track a point

- = To determine the motion vector of a point from a frame to its next frame (discrete time)
- \simeq To determine the velocity vector of a point (continuous time)
 - Distribution of the motion vectors over the image is called optical flow
 - dense optical flow
 - sparse optical flow
 - Sometimes the terms "motion vector" and "optical flow" are used interchangeably (depending on the context)

Optical Flow Constraint

Assuming that the intensity of the tracked point is constant, I(x, y, t) = I(x + dx, y + dy, t + dt) $= I(x, y, t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt + \epsilon$

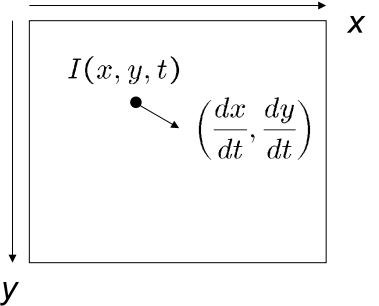
Note: we don't distinguish infinitesimal dx and finite Δx in today's lecture note

Ignoring the 2nd order or higher terms ϵ yields

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

This single equation is not enough to determine the two components $\left(\frac{dx}{dt}, \frac{dy}{dt}\right)$

[Horn and Schunck 1981]

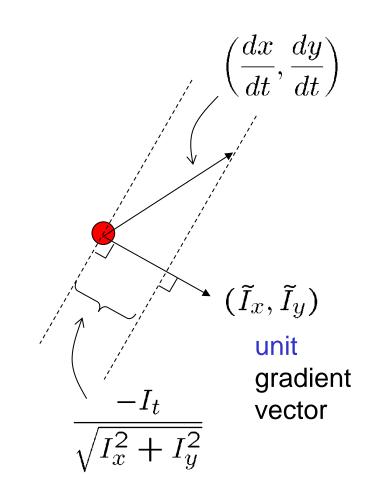


Interpretation of the Constraint

With
$$\frac{\partial I}{\partial x} = I_x$$
, $\frac{\partial I}{\partial y} = I_y$, $\frac{\partial I}{\partial t} = I_t$
 $(I_x, I_y) \left(\frac{dx}{dt}, \frac{dy}{dt}\right)^T = -I_t$
 $(\tilde{I}_x, \tilde{I}_y) \left(\frac{dx}{dt}, \frac{dy}{dt}\right)^T = \frac{-I_t}{\sqrt{I_x^2 + I_y^2}}$

where $(\tilde{I}_x, \tilde{I}_y)$ is a unit vector parallel to (I_x, I_y)

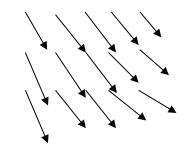
Only the component in the direction of the gradient vector is determined (aperture problem)



Thus we cannot determine the optical flow from I_x , I_y and I_t . Additional assumptions are needed.

ex1) Optical flow changes smoothly in space

• [Horn and Schunck 1981]

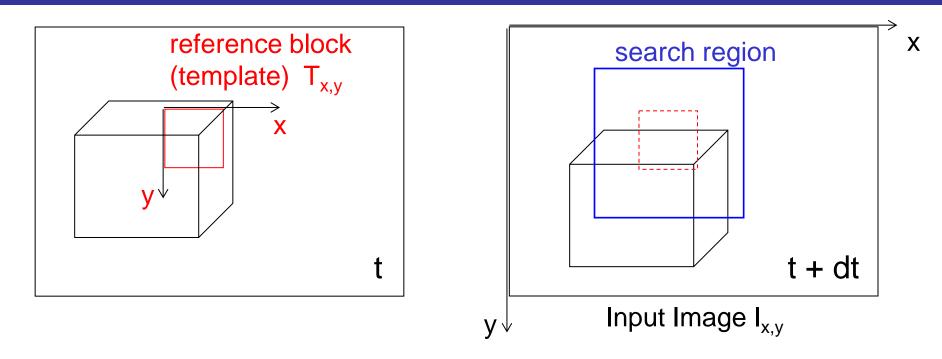


- ex2) Optical flow is constant within a small neighborhood of a point
 - We will investigate this in the followings
 - So, what we call "point tracking" is actually "patch (block) tracking"

Outline

- Tracking of a Point
- Block Matching
- Gradient Methods
- Feature Point Detector

Block Matching



(When you are sure the incoming images only translate, you can use a fixed T. Otherwise T is updated every frame)

Slides reference block through search region and compare

• How to compare?: by computing evaluation functions

Evaluation Functions

$$d_{SSD}(x,y) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (T_{i,j} - I_{x+i,y+j})^2 \qquad : \text{sum of squared differences} \\ \rightarrow \min$$

$$d_{SAD}(x,y) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} |T_{i,j} - I_{x+i,y+j}| \qquad : \text{sum of absolute differences} \\ \rightarrow \min$$

$$C(x,y) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} T_{i,j} I_{x+i,y+j} \qquad : \text{cross correlation} \\ \rightarrow \max$$

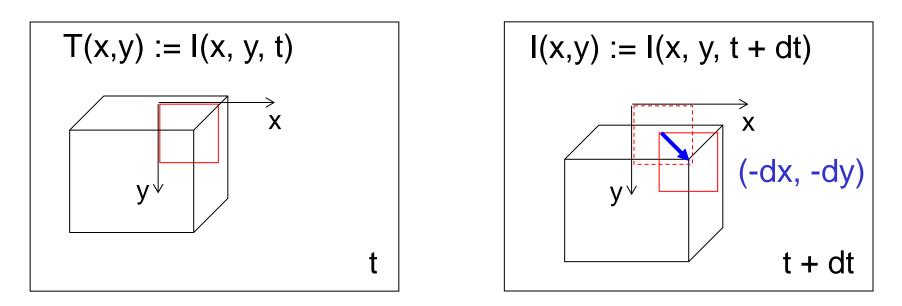
$$d_{SAD}(x,y) = \frac{\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} |T_{i,j} - T_{x+i,y+j}|}{\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (T_{i,j} - T)(I_{x+i,y+j} - T_{x,y})} \qquad \text{average} \\ \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (T_{i,j} - T)^2 \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (I_{x+i,y+j} - T_{x,y})^2 \\ : \text{normalized cross correlation} \\ \rightarrow \max$$

Note: $T_{x,y}$ and $I_{x,y}$ are short for T(x,y) and I(x,y) here (Not derivative!)

Outline

- Tracking of a Point
- Block Matching
- Gradient Methods
- Feature Point Detector

Utilize Gradients to Explore the Solution



From the intensity constancy assumption,

$$T(x,y) = I(x - dx, y - dy)$$

Achieve this by minimizing SSD:

$$E(dx, dy) = \sum_{u,v} \{T(x + dx + u, y + dy + v) - I(x + u, y + v)\}^2$$

Using 1st order Taylor expansion of T(x, y),

$$E(dx, dy) = \sum_{u,v} \{T(x + u, y + v) + T_x(x + u, y + v)dx + T_y(x + u, y + v)dy - I(x + u, y + v)\}^2$$

$$= \sum \{e + T_x dx + T_y dy\}^2 \quad (e := T - I)$$

$$= \sum \left\{e + (T_x, T_y) \begin{pmatrix} dx \\ dy \end{pmatrix}\right\}^2$$

To minimize E, derivative of E w.r.t. (dx, dy) is equated to 0

$$\sum \left\{ e + (T_x, T_y) \begin{pmatrix} dx \\ dy \end{pmatrix} \right\} \begin{pmatrix} T_x \\ T_y \end{pmatrix} = 0$$

$$\sum \begin{pmatrix} T_x^2 & T_x T_y \\ T_x T_y & T_y^2 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = -\sum e \begin{pmatrix} T_x \\ T_y \end{pmatrix}$$
$$\begin{pmatrix} \sum T_x^2 & \sum T_x T_y \\ \sum T_x T_y & \sum T_y^2 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = - \begin{pmatrix} \sum (T-I)T_x \\ \sum (T-I)T_y \end{pmatrix}$$
$$H \begin{pmatrix} dx \\ dy \end{pmatrix} = -g$$

Then, (dx, dy) is obtained by solving this linear equation (Lucas-Kanade method [Lucas and Kanade 1981])

 (dx, dy) is only approximately obtained because of the 1st order Taylor approximation. We often need to iteratively run the above process by setting I(x, y) := I(x - dx, y - dy) to obtain a good result

Lucas-Kanade method can be viewed as an application of Gauss-Newton method (an iterative non-linear optimization method for least square problems).

$$\begin{split} \min_{x} ||e(x)||^{2} &= \min_{x} ||f(x) - s||^{2} \\ ||e(x_{0} + dx)||^{2} &\simeq ||f(x_{0}) + \frac{\partial f}{\partial x} dx - s||^{2} \\ &= ||\frac{\partial f}{\partial x} dx + e(x_{0})||^{2} = ||Jdx + e_{0}||^{2} \end{split}$$

$$\frac{\partial}{\partial x} ||e(x)||^2|_{x=x_0} = (Jdx + e_0)^T J = 0$$
$$(J^T J)dx = -J^T e_0$$
$$Hdx = -g$$

Shingo Kagami (Tohoku Univ.) Intelligent Control Systems 2016 (5)

 $\widehat{}$

Formulations for more general image transformations

$$J = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial w} \cdot \frac{\partial w}{\partial x}$$

x: transform parameters

w(**x**): warp function

(i.e. how x and y coordinates change w.r.t. params)

e.g.

- translation + rotation (3 dof)
- translation + rotation + magnification (4 dof)
- affine transformation (6 dof)
- perspective transformation (8 dof)

Generalization

Other optimization methods

• Levenberg-Marquardt method

$$(J^T J + \lambda I)dx = -J^T e_0$$

- I: identity matrix
- λ : scalar coefficient

(small λ : Gauss-Newton, large λ : steepest descent)

• Efficient Second-order Minimization method [Banhimane and Malis 2007]

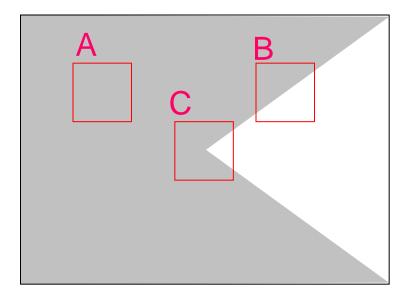
$$(J^T J)dx = -J^T e_0, \ J = (J_1 + J_2)/2$$

 J_1 : derivative of template image w.r.t. param. J_2 : derivative of current warped image w.r.t. param. (Possible when parametrized with special care)

Outline

- Tracking of a Point
- Block Matching
- Gradient Methods
- Feature Point Detector

What is Good Point to Track



Recall that we aggregate many flows within a small block to obtain enough constraints

- A: Block with constant intensity is not suitable (0 constraint)
- B: Block including only edges with the same direction is also not suitable (essentially 1 constraint)

How to find a block like C?

$$(x_0 + dx, y_0 + dy)$$

 (x_0, y_0)

Consider two blocks

- around a point of interest (x₀, y₀)
- around the point $(x_0 + dx, y_0 + dy)$

These two blocks should not resemble each other for any choice of (dx, dy)

Let's measure how they do not resemble by SSD E(dx, dy) $\equiv \sum_{u,v} \{I(x_0 + dx + u, y_0 + dy + v) - I(x_0 + u, y_0 + v)\}^2$

With 1st order Taylor expansion,

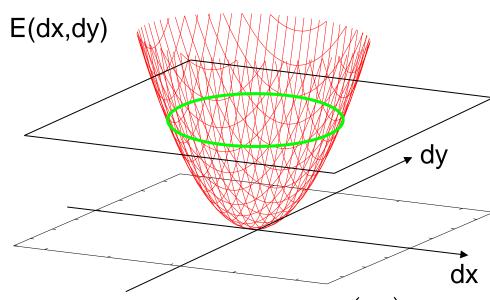
$$E(dx, dy)$$

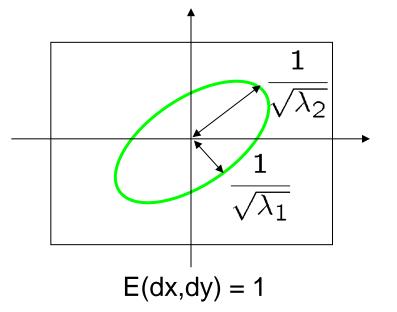
$$= \sum_{u,v} \{I_x(x_0 + u, y_0 + v)dx + I_y(x_0 + u, y_0 + v)dy\}^2$$

$$= \sum I_x^2 dx^2 + 2\sum I_x I_y dxdy + \sum I_y^2 dy^2$$

$$= (dx, dy) \left(\sum_{i=1}^{i=1} I_x^2 \sum_{i=1}^{i=1} I_x I_y\right) \left(\frac{dx}{dy}\right)$$

$$= (dx, dy) H \begin{pmatrix} dx \\ dy \end{pmatrix}$$





$$E(dx, dy) = (dx, dy)H\begin{pmatrix}dx\\dy\end{pmatrix} = 1$$

is an ellipse in (dx, dy) plane. This ellipse should be as small as possible and should be close to true circle.

i.e.: Eigenvalues λ_1 , λ_2 of H should be large enough and close to each other.

Compatible with numerical stability in solving $H\begin{pmatrix} dx \\ dy \end{pmatrix}$

dy

(Just in case you forget linear algebra)

$$(dx, dy)H\begin{pmatrix}dx\\dy\end{pmatrix} = 1$$

Noting that H is symmetric, H can be diagonalized by an orthonormal matrix P (i.e. $P^{-1} = P^{T}$) so that $P^{T} H P = diag(\lambda_1, \lambda_2)$

$$(dx, dy) P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^T \begin{pmatrix} dx \\ dy \end{pmatrix} = 1$$

Viewed in a new coordinate system $\mathbf{z} = P^T (dx, dy)^T$

$$z^T egin{pmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{pmatrix} z = 1$$

Or, equivalently

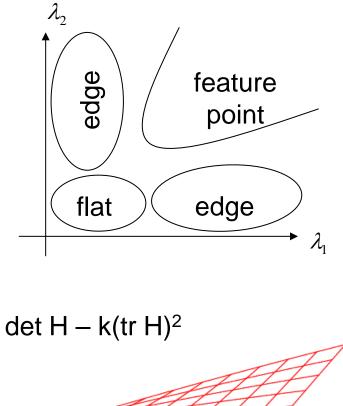
$$\lambda_1 z_1^2 + \lambda_2 z_2^2 = \mathbf{1}$$

Feature Point Detector

Harris operator [Harris and Stephens 1988] det $H - k(\operatorname{tr} H)^2$ $= \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$

Good Features to Track [Tomasi and Kanade 1991] $\min(\lambda_1, \lambda_2)$

These "good" points for tracking and/or matching are called feature point, interest point, keypoint and so on.





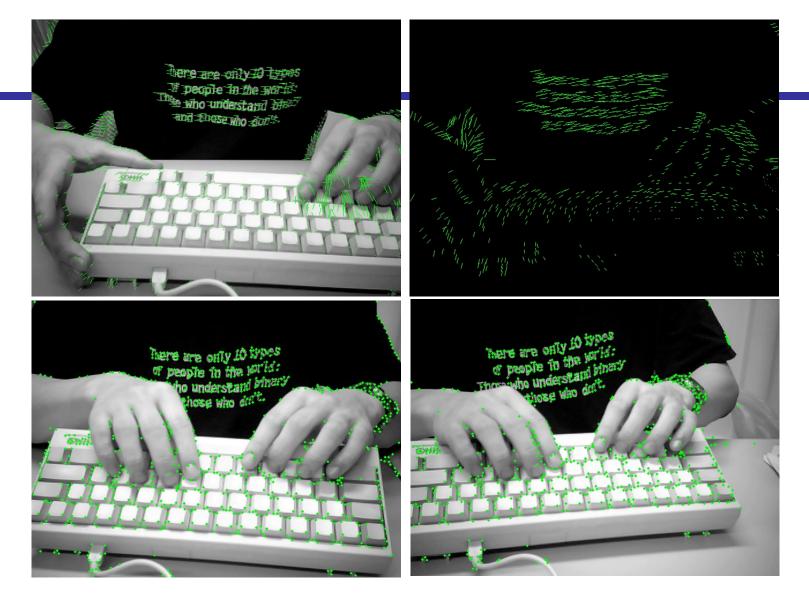
Other Feature Point Detectors

SIFT detector [Lowe 2004]

- Build a Gaussian scale space and apply (an approximate) Laplacian operator in each scale
- Detect extrema of the results (i.e. strongest responses among their neighbor in space as well as in scale)
- Eliminate edge responses
- (Often followed by encoding of edge orientation histogram in the neighborhood into a fixed-size vector, called a feature point descriptor, which can be compared with each other by Euclidean distance)

FAST detector [Rosten et al. 2010]

- Heuristics based on pixel values along a surrounding circle
- Optimized for speed and quality by machine learning approach



Lucas-Kanade method applied to "Good-features-to-track" points is often called KLT (Kanade-Lucas-Tomasi) tracker

Summary

- Tracking of a Point
 - is an ill-posed problem
 - a block is often considered instead of a point
- Block Matching
 - full-search optimization of an evaluation function
 SSD, SAD, (normalized) cross correlation
- Lucas-Kanade method
 - a Gradient method for optimization of SSD
- Feature Point Detector
 - Harris operator, Good feature to track
 - KLT tracker

References

- B. K. P. Horn and B. G. Schunck: Determining Optical Flow, Artificial Intelligence, vol.17, pp.185-203, 1981.
- C. Harris and M. Stephens: A Combined Corner and Edge Detector, Proc. 14th Alvey Vision Conference, pp.147-151, 1988.
- B. D. Lucas and T. Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision, Proc. 7th International Conference on Artificial Intelligence, pp.674-679, 1981.
- S. Benhimane and E. Malis: Homography-based 2D Visual Tracking and Servoing, International Journal of Robotics Research, vol. 26, no. 7, pp.661-676, 2007.
- D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
- E. Rosten, R. Porter and T. Drummond: Faster and Better: A Machine Learning Approach to Corner Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 1, pp. 105-119, 2010.
- C. Tomasi and T. Kanade: Detection and Tracking of Point Features, Shape and Motion from Image Streams: a Factorization Method –Part 3, Technical Report CMU-CS-91-132, Carnegie Mellon University, 1991.

Sample codes are available at http://www.ic.is.tohoku.ac.jp/~swk/lecture/